skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 17, 2026

Title: Diffusion probabilistic generative models for accelerated, in‐NICU permanent magnet neonatal MRI
Purpose: Magnetic Resonance Imaging (MRI) enables non‐invasive assessment of brain abnormalities during early life development. Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants, but have long scan times due to lower signal‐to‐noise ratios (SNR) and limited receive coils. This work accelerates in‐NICU MRI with diffusion probabilistic generative models by developing a training pipeline accounting for these challenges. Methods: We establish a novel training dataset of clinical, 1 Tesla neonatal MR images in collaboration with Aspect Imaging and Sha'are Zedek Medical Center. We propose a pipeline to handle the low quantity and SNR of our real‐world dataset (1) modifying existing network architectures to support varying resolutions; (2) training a single model on all data with learned class embedding vectors; (3) applying self‐supervised denoising before training; and (4) reconstructing by averaging posterior samples. Retrospective under‐sampling experiments, accounting for signal decay, evaluated each item of our proposed methodology. A clinical reader study with practicing pediatric neuroradiologists evaluated our proposed images reconstructed from under‐sampled data. Results: Combining all data, denoising pre‐training, and averaging posterior samples yields quantitative improvements in reconstruction. The generative model decouples the learned prior from the measurement model and functions at two acceleration rates without re‐training. The reader study suggests that proposed images reconstructed from under‐sampled data are adequate for clinical use. Conclusion: Diffusion probabilistic generative models applied with the proposed pipeline to handle challenging real‐world datasets could reduce the scan time of in‐NICU neonatal MRI.  more » « less
Award ID(s):
2239687
PAR ID:
10614422
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Magnetic Resonance in Medicine
ISSN:
0740-3194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PurposeTo examine the effect of incorporating self‐supervised denoising as a pre‐processing step for training deep learning (DL) based reconstruction methods on data corrupted by Gaussian noise. K‐space data employed for training are typically multi‐coil and inherently noisy. Although DL‐based reconstruction methods trained on fully sampled data can enable high reconstruction quality, obtaining large, noise‐free datasets is impractical. MethodsWe leverage Generalized Stein's Unbiased Risk Estimate (GSURE) for denoising. We evaluate two DL‐based reconstruction methods: Diffusion Probabilistic Models (DPMs) and Model‐Based Deep Learning (MoDL). We evaluate the impact of denoising on the performance of these DL‐based methods in solving accelerated multi‐coil magnetic resonance imaging (MRI) reconstruction. The experiments were carried out on T2‐weighted brain and fat‐suppressed proton‐density knee scans. ResultsWe observed that self‐supervised denoising enhances the quality and efficiency of MRI reconstructions across various scenarios. Specifically, employing denoised images rather than noisy counterparts when training DL networks results in lower normalized root mean squared error (NRMSE), higher structural similarity index measure (SSIM) and peak signal‐to‐noise ratio (PSNR) across different SNR levels, including 32, 22, and 12 dB for T2‐weighted brain data, and 24, 14, and 4 dB for fat‐suppressed knee data. ConclusionWe showed that denoising is an essential pre‐processing technique capable of improving the efficacy of DL‐based MRI reconstruction methods under diverse conditions. By refining the quality of input data, denoising enables training more effective DL networks, potentially bypassing the need for noise‐free reference MRI scans. 
    more » « less
  2. Computational image reconstruction algorithms generally produce a single image without any measure of uncertainty or confidence. Regularized Maximum Likelihood (RML) and feed-forward deep learning approaches for inverse problems typically focus on recovering a point estimate. This is a serious limitation when working with under-determined imaging systems, where it is conceivable that multiple image modes would be consistent with the measured data. Characterizing the space of probable images that explain the observational data is therefore crucial. In this paper, we propose a variational deep probabilistic imaging approach to quantify reconstruction uncertainty. Deep Probabilistic Imaging (DPI) employs an untrained deep generative model to estimate a posterior distribution of an unobserved image. This approach does not require any training data; instead, it optimizes the weights of a neural network to generate image samples that fit a particular measurement dataset. Once the network weights have been learned, the posterior distribution can be efficiently sampled. We demonstrate this approach in the context of interferometric radio imaging, which is used for black hole imaging with the Event Horizon Telescope, and compressed sensing Magnetic Resonance Imaging (MRI). 
    more » « less
  3. We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier sub- sampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction al- gorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance. 
    more » « less
  4. Implicit Neural Representations (INRs) are a learning-based approach to accelerate Magnetic Resonance Imaging (MRI) acquisitions, particularly in scan-specific settings when only data from the under-sampled scan itself are available. Previous work has shown that INRs improve rapid MRI through inherent regularization imposed by neural network architectures. Typically parameterized by fully connected neural networks, INRs provide continuous image representations by mapping a physical coordinate location to its intensity. Prior approaches have applied unlearned regularization priors during INR training and were limited to 2D or low-resolution 3D acquisitions. Meanwhile, diffusion-based generative models have recently gained attention for learning powerful image priors independent of the measurement model. This work proposes INFusion, a technique that regularizes INR optimization from under-sampled MR measurements using pre-trained diffusion models to enhance reconstruction quality. In addition, a hybrid 3D approach is introduced, enabling INR application on large-scale 3D MR datasets. Experimental results show that in 2D settings, diffusion regularization improves INR training, while in 3D, it enables feasible INR training on matrix sizes of 256 × 256 × 80. 
    more » « less
  5. Self‐supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self‐supervised learning methods for physics‐guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self‐supervised learning strategy that more efficiently uses the acquired data to train a physics‐guided reconstruction network without a database of fully sampled data. The proposed multi‐mask self‐supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi‐mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG‐SENSE, and single‐mask SSDU DL‐MRI, as well as supervised DL‐MRI when fully sampled data are available. The results on knee MRI show that the proposed multi‐mask SSDU outperforms SSDU and performs as well as supervised DL‐MRI. A clinical reader study further ranks the multi‐mask SSDU higher than supervised DL‐MRI in terms of signal‐to‐noise ratio and aliasing artifacts. Results on brain MRI show that multi‐mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi‐mask SSDU at R = 8 significantly improves reconstruction compared with single‐mask SSDU at R = 8, as well as CG‐SENSE at R = 2. 
    more » « less