skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 24, 2026

Title: Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
We provide a framework for solving inverse problems with diffusion models learned from linearly corrupted data. Firstly, we extend the Ambient Diffusion framework to enable training directly from measurements corrupted in the Fourier domain. Subsequently, we train diffusion models for MRI with access only to Fourier sub- sampled multi-coil measurements at acceleration factors R= 2,4,6,8. Secondly, we propose Ambient Diffusion Posterior Sampling (A-DPS), a reconstruction al- gorithm that leverages generative models pre-trained on one type of corruption (e.g. image inpainting) to perform posterior sampling on measurements from a different forward process (e.g. image blurring). For MRI reconstruction in high acceleration regimes, we observe that A-DPS models trained on subsampled data are better suited to solving inverse problems than models trained on fully sampled data. We also test the efficacy of A-DPS on natural image datasets (CelebA, FFHQ, and AFHQ) and show that A-DPS can sometimes outperform models trained on clean data for several image restoration tasks in both speed and performance.  more » « less
Award ID(s):
2239687
PAR ID:
10614427
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ICLR
Date Published:
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Inverse problems arise in a multitude of applications, where the goal is to recover a clean signal from noisy and possibly (non)linear observations. The difficulty of a reconstruction problem depends on multiple factors, such as the ground truth signal structure, the severity of the degradation and the complex interactions between the above. This results in natural sample-by-sample variation in the difficulty of a reconstruction problem. Our key observation is that most existing inverse problem solvers lack the ability to adapt their compute power to the difficulty of the reconstruction task, resulting in subpar performance and wasteful resource allocation. We propose a novel method, severity encoding, to estimate the degradation severity of corrupted signals in the latent space of an autoencoder. We show that the estimated severity has strong correlation with the true corruption level and can provide useful hints on the difficulty of reconstruction problems on a sample-by-sample basis. Furthermore, we propose a reconstruction method based on latent diffusion models that leverages the predicted degradation severities to fine-tune the reverse diffusion sampling trajectory and thus achieve sample-adaptive inference times. Our framework, Flash-Diffusion, acts as a wrapper that can be combined with any latent diffusion-based baseline solver, imbuing it with sample-adaptivity and acceleration. We perform experiments on both linear and nonlinear inverse problems and demonstrate that our technique greatly improves the performance of the baseline solver and achieves up to 10× acceleration in mean sampling speed. 
    more » « less
  2. We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform. 
    more » « less
  3. The expectation consistent (EC) approximation framework is a state-of-the-art approach for solving (generalized) linear inverse problems with high-dimensional random forward operators and i.i.d. signal priors. In image inverse problems, however, both the forward operator and image pixels are structured, which plagues traditional EC implementations. In this work, we propose a novel incarnation of EC that exploits deep neural networks to handle structured operators and signals. For phase-retrieval, we propose a simplified variant called “deepECpr” that reduces to iterative denoising. In experiments recovering natural images from phaseless, shot-noise corrupted, coded-diffraction-pattern measurements, we observe accuracy surpassing the state- of-the-art prDeep (Metzler et al., 2018) and Diffusion Posterior Sampling (Chung et al., 2023) approaches with two-orders-of- magnitude complexity reduction. 
    more » « less
  4. Diffusion models have established new state of the art in a multitude of computer vision tasks, in- cluding image restoration. Diffusion-based inverse problem solvers generate reconstructions of ex- ceptional visual quality from heavily corrupted measurements. However, in what is widely known as the perception-distortion trade-off, the price of perceptually appealing reconstructions is often paid in declined distortion metrics, such as PSNR. Distortion metrics measure faithfulness to the observation, a crucial requirement in inverse problems. In this work, we propose a novel framework for inverse problem solving, namely we assume that the observation comes from a stochastic degra- dation process that gradually degrades and noises the original clean image. We learn to reverse the degradation process in order to recover the clean image. Our technique maintains consistency with the original measurement throughout the reverse process, and allows for great flexibility in trading off perceptual quality for improved distortion metrics and sampling speedup via early-stopping. We demonstrate the efficiency of our method on different high-resolution datasets and inverse problems, achieving great improvements over other state-of-the-art diffusion-based methods with respect to both perceptual and distortion metrics. Source code and pre-trained models will be released soon. 
    more » « less
  5. Purpose: Magnetic Resonance Imaging (MRI) enables non‐invasive assessment of brain abnormalities during early life development. Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants, but have long scan times due to lower signal‐to‐noise ratios (SNR) and limited receive coils. This work accelerates in‐NICU MRI with diffusion probabilistic generative models by developing a training pipeline accounting for these challenges. Methods: We establish a novel training dataset of clinical, 1 Tesla neonatal MR images in collaboration with Aspect Imaging and Sha'are Zedek Medical Center. We propose a pipeline to handle the low quantity and SNR of our real‐world dataset (1) modifying existing network architectures to support varying resolutions; (2) training a single model on all data with learned class embedding vectors; (3) applying self‐supervised denoising before training; and (4) reconstructing by averaging posterior samples. Retrospective under‐sampling experiments, accounting for signal decay, evaluated each item of our proposed methodology. A clinical reader study with practicing pediatric neuroradiologists evaluated our proposed images reconstructed from under‐sampled data. Results: Combining all data, denoising pre‐training, and averaging posterior samples yields quantitative improvements in reconstruction. The generative model decouples the learned prior from the measurement model and functions at two acceleration rates without re‐training. The reader study suggests that proposed images reconstructed from under‐sampled data are adequate for clinical use. Conclusion: Diffusion probabilistic generative models applied with the proposed pipeline to handle challenging real‐world datasets could reduce the scan time of in‐NICU neonatal MRI. 
    more » « less