Food, energy and water (FEW) systems are inextricably linked, and thus, solutions to FEW nexus challenges, including water and food insecurity, require an interconnected science and policy approach framed in systems thinking. To drive these solutions, we developed an interdisciplinary, experiential graduate education program focused on innovations at the FEW nexus. As part of our program, PhD students complete a two-course sequence: (1) an experiential introduction to innovations at the FEW nexus and (2) a data practicum. The two courses are linked through an interdisciplinary FEW systems research project that begins during the first course and is completed at the end of the second course. Project deliverables include research manuscripts, grant proposals, policy memos, and outreach materials. Topics addressed in these projects include building electrification to reduce reliance on fossil fuels for heating, agrivoltaic farming to combat FEW vulnerabilities in the southwestern United States, assessment of food choices to influence sustainable dining practices, and understanding the complexities of FEW nexus research and training at the university level. Evaluation data were generated from our first three student cohorts (n = 33 students) using a mixed method, multi-informant evaluation approach, including the administration of an adapted version of a validated pre-post-survey to collect baseline and end-of-semester data. The survey assessed student confidence in the following example areas: communication, collaboration, and interdisciplinary research skills. Overall, students reported confidence growth in utilizing interdisciplinary research methods (e.g., synthesize the approaches and tools from multiple disciplines to evaluate and address a research problem), collaborating with range of professionals and communicating their research results to diverse audience. The growth in confidence in the surveyed areas aligned with the learning objectives for the two-course sequence, and the interdisciplinary project experience was continually improved based on student feedback. This two-course sequence represents one successful approach for educators to rethink the traditional siloed approach of training doctoral students working at the FEW nexus. 
                        more » 
                        « less   
                    
                            
                            Understanding the emerging food, energy, and water nexus (FEW-Nexus) systems in science education
                        
                    
    
            Abstract The intricate interdependence of food, energy, and water (FEW) systems necessitates effective and coordinated educational efforts across various contexts to equip students with the skills to tackle FEW challenges. As an emerging interdisciplinary field, understanding educators’ and education researchers’ views on the FEW-Nexus perspective, self-efficacy, needs, and approaches to promoting community engagement are vital to facilitating the growth of this field. The National Collaborative for Research on Food, Energy, and Water Education (NC-FEW) is an NSF-funded, emergent, interdisciplinary community of educators and discipline-based education researchers engaged in sustained network and capacity building around FEW-Nexus. We present initial survey findings from 166 NC-FEW members, predominantly postsecondary faculty from varied disciplines. Our goal was to understand their views of FEW-Nexus perspective, self-efficacy in FEW-Nexus-specific teaching and education research, instructional design, and community engagement. The findings suggest that FEW-Nexus educators in the NC-FEW community view the Nexus as a blend of diverse concepts and themes, emphasizing the necessity of establishing a concrete definition of the nexus perspective. Their self-efficacy levels were higher in general STEM teaching (mean = 4.03) and STEM education research (mean = 3.61) compared to FEW-Nexus-specific teaching (mean = 3.43) and education research (mean = 3.18). Respondents reported feeling moderately connected to the FEW-Nexus educator community (mean = 2.21). They also outlined anticipated community benefits and contributions to promoting teaching and learning in the FEW-Nexus. These findings highlight the significance of boosting FEW-Nexus educators’ self-efficacy and building a stronger sense of community, having important implications for professional development in emerging fields and broader educational reform endeavors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2242276
- PAR ID:
- 10614499
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Environmental Studies and Sciences
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2190-6483
- Format(s):
- Medium: X Size: p. 55-70
- Size(s):
- p. 55-70
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Preservice teacher preparation programs and inservice professional development enhance science teaching self-efficacy. Research has shown that elementary teachers often have low self-efficacy for teaching science and engineering. However, there is less evidence surrounding engineering teaching self-efficacy. In this systematic review of literature, we explored the research question: What does the existing literature on self-efficacy reveal about fostering elementary teachers’ engineering teaching self-efficacy? We (1) synthesize the existing research on engineering teaching self-efficacy and (2) describe trends in research and uncover gaps that exist, including recommendations for future research. Among the 117 articles included in our full systematic review of science and engineering teaching self-efficacy, only 13 empirical studies focused specifically on engineering teaching self-efficacy. With a dearth of studies in both preservice and inservice contexts, there is a need for additional research on engineering teaching self-efficacy. In particular, longitudinal studies that track change over time and measure lasting effects of interventions. Further, detailed explorations of the factors that impact engineering teaching self-efficacy across multiple contexts are needed. Findings from these studies will help STEM educators to inform the design of preservice teacher education programs as well as inservice professional development opportunities.more » « less
- 
            The food-energy-water (FEW) nexus presents an opportunity to rethink predominant approaches to household behavior change science. We linked emerging FEW nexus research with existing literature examining household consumption and pro-environmental behaviors. While a large body of work examines the environmental impacts of household life and explores pathways to behavior change for sustainability, the literature lacks studies that test interventions in multiple FEW resource categories, leaving researchers unable to identify tensions and tradeoffs in the household system. To guide this developing field and accumulate findings on household behavior across disciplines, we proposed a conceptual typology that synthesizes interdisciplinary analytic traditions to classify behavioral interventions targeting the household FEW nexus. The typology synthesizes behavioral interventions as active, passive, or structural, and household-specific or non-specific, illustrating six distinct categories: information, tailored information, action, gamification, policy/price change, and material/technology provision. A review of 40 studies that guided the typology identifies four significant lessons for future intervention research: household non-specific information and tailored information work better together, feedback is more effective when it is persistent, price-based interventions (information or incentives) are often ineffective, and material/technology provision is very effective but utilized in few household studies. To push forward household resource consumption science, we advocated for a holistic nexus focus that is rooted in interdisciplinarity, coalition building with stakeholders, and data reporting that facilitates knowledge accumulation.more » « less
- 
            Interdisciplinary environmental and sustainability (IES) programs are different from other fields because they focus on a complex integration of humanities, social, and natural sciences concepts centered on the interactions of coupled human and natural systems. The interdisciplinary nature of IES programs does not lend itself to traditional discipline-specific concept inventory frameworks for critically evaluating preconceptions and learning. We discuss the results of the first phase of a research project to develop a next generation concept inventory for evaluating interdisciplinary concepts important for introductory IES courses. Using the Food-Energy-Water (FEW) Nexus (the intersections/interdependencies of food, energy, and water sectors) as our focus, we conducted a content analysis of eight representative college-level introductory environmental course syllabi and course materials (e.g., textbooks, journal articles, print media) to identify common interdisciplinary FEW Nexus concepts taught in introductory IES courses. Results demonstrate that all IES introductory course materials reference the FEW Nexus. Food, energy, and/or water resources as individual elements of the FEW Nexus are frequently described, but connections between these resource systems are included less often. Biology, energy systems, waste and pollution in the natural environment, agriculture, earth sciences and geology, climate change, behavioral social sciences, and economics concepts are most associated with FEW concepts, hinting at commonalities across IES topics that anchor systems thinking. Despite differences in IES programs, there appears to be some alignment between core concepts being taught at the FEW Nexus in introductory courses.more » « less
- 
            Abstract BackgroundTeacher turnover is a dire and chronic problem for many education systems across the globe. According to UNESCO, 70% of teachers will be replaced by 2030. This study investigates the relationship between the retention of science and mathematics teachers and factors related to human, social, structural, and positive psychological capital—a four-capital teacher retention model. More specifically, this study explores how teaching self-efficacy, leadership engagement, teacher-school fit, diversity beliefs, community connections, and professional social network characteristics (e.g., size, bridging, proximity, reach) relate to teacher retention. Additionally, potential differences in retention and the aforementioned factors related to the four-capital model between Master Teaching Fellows (MTFs) and their peers (non-MTFs) with similar human capital (demographics and experience) are explored in this study. Participants were K-12 science and mathematics teachers (85 MTFs and 82 non-MTFs) from six different regions across the U.S. MTFs participated in one of seven long-term (5–6 years) Robert Noyce Master Teaching Fellowship Programs funded by the National Science Foundation. ResultsLeadership engagement was positively associated with shifting (from teaching to a formal leadership position). Teacher-school fit was negatively associated with leaving. For secondary teachers, teaching self-efficacy was positively associated with shifting to a leadership position. Leadership network size, bridging, and geographic proximity variables were positively related to shifting when compared to staying as classroom teachers. Teaching network bridging and leadership network bridging were positively related to leavers when compared to stayers. MTF shifters were likely to shift earlier in their careers than non-MTFs. Lastly, MTFs had higher self-efficacy, geographically larger teaching networks and leadership networks, and more contacts and bridging roles in their leadership networks than non-MTFs. ConclusionFindings provide support for teacher leadership programs in promoting leadership roles and responsibilities for STEM teachers and retaining teachers in STEM education either in the classroom or in administrative roles. These findings suggest that school administrators may also play a key role in encouraging teachers to engage in leadership activities and have a broader impact on public education by, for example, adopting a hybrid model of leadership roles that involves classroom teaching.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
