skip to main content


Title: Teaching the E in STEM: A Synthesis of the Engineering Teaching Self-Efficacy Literature.
Preservice teacher preparation programs and inservice professional development enhance science teaching self-efficacy. Research has shown that elementary teachers often have low self-efficacy for teaching science and engineering. However, there is less evidence surrounding engineering teaching self-efficacy. In this systematic review of literature, we explored the research question: What does the existing literature on self-efficacy reveal about fostering elementary teachers’ engineering teaching self-efficacy? We (1) synthesize the existing research on engineering teaching self-efficacy and (2) describe trends in research and uncover gaps that exist, including recommendations for future research. Among the 117 articles included in our full systematic review of science and engineering teaching self-efficacy, only 13 empirical studies focused specifically on engineering teaching self-efficacy. With a dearth of studies in both preservice and inservice contexts, there is a need for additional research on engineering teaching self-efficacy. In particular, longitudinal studies that track change over time and measure lasting effects of interventions. Further, detailed explorations of the factors that impact engineering teaching self-efficacy across multiple contexts are needed. Findings from these studies will help STEM educators to inform the design of preservice teacher education programs as well as inservice professional development opportunities.  more » « less
Award ID(s):
2151056
NSF-PAR ID:
10415443
Author(s) / Creator(s):
Date Published:
Journal Name:
Association for Science Teacher Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-efficacy is a topic of great interest in elementary preservice and inservice teacher education, considering that elementary teachers often have low science and engineering teaching self-efficacy. In this systematic review, we synthesize existing research to reveal trends and uncover existing gaps, including recommendations for future research. Out of 117, we found 84 articles studied preservice, 31 inservice and two articles studied both preservice/inservice teachers’ self-efficacy. Findings from thematic analysis indicate that the diversity of teacher education programs, both across the United States and globally, offers a rich context for considering a range of programmatic features that impact elementary teachers’ science and engineering teaching self-efficacy. Implications for future research and practice in multiple contexts across teacher preparation programs are discussed. 
    more » « less
  2. Elementary teachers often have low self-efficacy for teaching science and engineering, and a range of professional development experiences have been designed to support teaching self-efficacy. Out of 117 total studies from 2010-2021 included in our systematic review, 22 focused specifically on inservice elementary teachers’ science and engineering teaching self-efficacy. In this presentation, we synthesize this existing research to identify trends in the literature. Our findings reveal that while existing research suggests that professional development opportunities can support elementary teachers’ science and engineering teaching self-efficacy, significant gaps in the literature remain. It is unclear why some professional development experiences support improved self-efficacy while others do not, and it is difficult to disentangle the effects of the many factors that may relate to self-efficacy within these studies. Recommendations for future research are described. 
    more » « less
  3. Early science, technology, engineering, and mathematics (STEM) education sets the stage for future STEM learning. The purpose of this synthesis is to understand the findings from investments to improve prekindergarten (preK) and elementary science teaching from projects funded by the National Science Foundation’s Discovery Research PreK-12 (DRK-12) program. In the 5 years spanning 2011–15, the DRK-12 program funded or cofunded 25 projects, totaling more than $60 million, related to improving preK and elementary science teaching. Our review identified 25 DRK-12 projects related to improving preK and elementary science teaching funded in 2011–15. We synthesized findings from 25 of those projects that produced products (e.g., peer-reviewed journal articles, conference papers) that described the project and outcomes. We synthesized the empirical findings from interventions in four common areas of investment: (a) preservice preK and elementary preparation programs, (b) in-service teacher professional development (PD), (c) instructional materials for preK and elementary teachers, and (d) strategies for diverse learners. Link to PDF: https://www.air.org/sites/default/files/2022-08/Improving-Prek-and-Elementary-Science-Teaching--DRK-12-STEM-August-2022.pdf 
    more » « less
  4. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  5. As a result of the increased inclusion of engineering and computer science standards for K-6 schools nationwide, there is a need to better understand how teacher educators can help develop preservice teachers’ (PSTs’) teaching self-efficacy in these areas. Ed+gineering provides novel opportunities for PSTs to experience teaching and learning engineering and coding content by building COVID-companion robots. Growing evidence supports robotics as a powerful approach to STEM learning for PSTs. In this study, Ed+gineering examined three cases to explore this overarching question: In what ways did PSTs’ virtual robotics project experience develop their self-efficacy for teaching engineering and coding? Three PST cases were examined, within the context of their work with other team members (i.e., undergraduate engineering student(s), 5th graders). To understand each of three PSTs’ virtual robotics project experiences, multiple data sources were collected and analyzed which includes mid- and post-semester CATME, end of course short-answer reflections, follow up interviews (including a modified Big Five personality inventory), and Zoom session recordings. Elementary PSTs Brenda, Erica, and Sarah experienced various levels of commitment and engagement in their five Zoom sessions. These factors, along with other personal and external influences, contributed to Bandura’s four identified sources of self-efficacy. This study examines these contributing factors to create an initial working model of how PSTs develop teaching self-efficacy. In this conference session, science teacher educators will learn more about this model and pedagogical decisions that seemed to influence PST’s self-efficacy for teaching engineering and computer science. 
    more » « less