skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: Optimizing active sites via chemical bonding of 2D metal–organic frameworks and MXenes for efficient hydrogen evolution reaction activity
A conductive MXene (Ti3C2Tx) integrated with 2D Ni3(HITP)2-MOFvia in situsynthesis enhances active site exposure, boosting electrocatalytic HER performance for efficient, sustainable hydrogen production.  more » « less
Award ID(s):
1945218
PAR ID:
10614551
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nanoscale
Date Published:
Journal Name:
Nanoscale
Volume:
17
Issue:
17
ISSN:
2040-3364
Page Range / eLocation ID:
11028 to 11036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reactions of (O=)PH(OCH2CH3)2and BrMg(CH2)mCH=CH2(4.9–3.2 equiv;m=4 (a), 5 (b), 6 (c)) give the dialkylphosphine oxides (O=)PH[(CH2)mCH=CH2]2(2 a–c; 77–81 % after workup), which are treated with NaH and then α,ω‐dibromides Br(CH2)nBr (0.49–0.32 equiv;n=8 (a′), 10 (b′), 12 (c′), 14 (d′)) to yield the bis(trialkylphosphine oxides) [H2C=CH(CH2)m]2P(=O)(CH2)n(O=)P[(CH2)mCH=CH2]2(3 ab′,3 bc′,3 cd′,3 ca′; 79–84 %). Reactions of3 bc′and3 ca′with Grubbs’ first‐generation catalyst and then H2/PtO2afford the dibridgehead diphosphine dioxides(4 bc′,4 ca′; 14–19 %,n′=2m+2);31P NMR spectra show two stereoisomeric species (ca. 70:30). Crystal structures of two isomers of the latter are obtained,out,out‐4 ca′and a conformer ofin,out‐4 ca′that features crossed chains, such that the (O=)P vectors appearout,out. Whereas4 bc′resists crystallization, a byproduct derived from an alternative metathesis mode, (CH2)12P(=O)(CH2)12(O=)P(CH2)12, as well as3 ab′and3 bc′, are structurally characterized. The efficiencies of other routes to dibridgehead diphosphorus compounds are compared. 
    more » « less
  2. Abstract Photolyses oftrans‐Fe(CO)3(P((CH2)n)3P) (n=10 (a), 12 (b), 14 (c), 16 (d), 18 (e)) in the presence of PMe3provide the first economical and scalable route to macrobicyclic dibridgehead diphosphines P((CH2)n)3P (1). These are isolated as mixtures ofin,in/out,outisomers that equilibrate with degeneratein,out/out,inisomers at 150 °C via pyramidal inversion at phosphorus. For the entire series, VT31P NMR data establish or boundKeq, rates, and activation parameters for a variety of phenomena, many of which involve homeomorphic isomerizations, topological processes by which certain molecules can turn themselves inside out (e. g.,in,in⇌out,out). This provides the first detailed mapping of such trends in homologous series of aliphatic bicyclic compounds XE((CH2)n)3EX with any type of bridgehead. Isomeric diborane adducts1 a,d ⋅ 2BH3are also characterized. Crystal structures ofout,out‐1 aandin,in‐1 a ⋅ 2BH3aid isomer assignments and reveal unusual cage conformations. 
    more » « less
  3. Dubilier, Nicole (Ed.)
    ABSTRACT Prochlorococcusis an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade ofProchlorococcus, nearly all cells can assimilate nitrite (NO2), with a subset capable of assimilating nitrate (NO3). LLI cells are maximally abundant near the primary NO2maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO3reduction and subsequent NO2release by phytoplankton. We hypothesized that someProchlorococcusexhibit incomplete assimilatory NO3reduction and examined NO2accumulation in cultures of threeProchlorococcusstrains (MIT0915, MIT0917, and SB) and twoSynechococcusstrains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO2during growth on NO3. Approximately 20–30% of the NO3transported into the cell by MIT0917 was released as NO2, with the rest assimilated into biomass. We further observed that co-cultures using NO3as the sole N source could be established for MIT0917 andProchlorococcusstrain MIT1214 that can assimilate NO2but not NO3. In these co-cultures, the NO2released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates withinProchlorococcuspopulations. IMPORTANCEEarth’s biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations ofProchlorococcus, the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, someProchlorococcuscells release extracellular NO2during growth on NO3. In the wild,Prochlorococcuspopulations are composed of multiple functional types, including those that cannot use NO3but can still assimilate NO2. We show that metabolic dependencies arise whenProchlorococcusstrains with complementary NO2production and consumption phenotypes are grown together on NO3. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates. 
    more » « less
  4. Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices. 
    more » « less
  5. Abstract The overarching goal of this study is to effect the elimination of platinum from adducts withcis–C≡C−Pt−C≡C‐ linkages, thereby generating novel conjugated polyynes. Thus, the bis(hexatriynyl) complextrans‐(p‐tol3P)2Pt((C≡C)3H)2is treated with 1,3‐diphosphines R2C(CH2PPh2)2to generate (R2C(CH2PPh2)2)2Pt((C≡C)3H)2(14; R=c,n‐Bu;e,p‐tolCH2). These condense with the diiodide complexes R2C(CH2PPh2)2PtI2(9 a,c) in the presence of CuI (cat.) and excess HNEt2to give the title macrocycles [(R2C(CH2PPh2)2)Pt(C≡C)3]4(16 c,e) as adducts of the byproduct [H2NEt2]+I(30–66 %). DOSY NMR experiments establish that this association is maintained in solution, but NaOAc removes the ammonium salt. The bis(triethylsilylpolyynyl) complexes (n‐Bu2C(CH2PPh2)2)Pt((C≡C)nSiEt3)2(n=2, 3) are synthesized analogously to14 c. They react with I2at rt to give mainly the diiodide complex9 cand the coupling product Et3Si(C≡CC≡C)nSiEt3. The possibility of competing reactions giving IC≡C species is investigated. Analogous reactions of the Pt4C24macrocycle16 calso give9 c, but no sp13C NMR signals or mass spectrometric Cxz+ions (x=24–100) could be detected. It is proposed that some cyclo[24]carbon is generated, but then rapidly converts to other forms of elemental carbon. No cyclotetracosane (C24H48) is detected when this sequence is carried out in the presence of PtO2and H2
    more » « less