skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 13, 2025

Title: Fpa (YlaN) is an iron(II) binding protein that functions to relieve Fur-mediated repression of gene expression in Staphylococcus aureus
ABSTRACT Iron (Fe) is a trace nutrient required by nearly all organisms. As a result of the demand for Fe and the toxicity of non-chelated cytosolic ionic Fe, regulatory systems have evolved to tightly balance Fe acquisition and usage while limiting overload. In most bacteria, including the mammalian pathogenStaphylococcus aureus, the ferric uptake regulator (Fur) is the primary transcriptional regulator controlling the transcription of genes that code for Fe uptake and utilization proteins. Fpa (formerly YlaN) was demonstrated to be essential inBacillus subtilisunless excess Fe is added to the growth medium, suggesting a role in Fe homeostasis. Here, we demonstrate that Fpa is essential inS. aureusupon Fe deprivation. Nullfuralleles bypassed the essentiality of Fpa. The absence of Fpa abolished the derepression of Fur-regulated genes during Fe limitation. Bioinformatic analyses suggest thatfpawas recruited to Gram-positive bacteria and, once acquired, was maintained in the genome as it co-evolved with Fur. Consistent with a role for Fpa in alleviating Fur-dependent repression, Fpa and Fur interactedin vivo, and Fpa decreased the DNA-binding ability of Furin vitro. Fpa bound Fe(II)in vitrousing oxygen or nitrogen ligands with an association constant that is consistent with a physiological role in Fe homeostasis. These findings have led to a model wherein Fpa is an Fe(II) binding protein that influences Fur-dependent regulation through direct interaction.IMPORTANCEIron (Fe) is an essential nutrient for nearly all organisms. If Fe homeostasis is not maintained, Fe may accumulate in the cytosol, which can be toxic. Questions remain about how cells efficiently balance Fe uptake and usage to prevent overload. Iron uptake and proper metalation of proteins are essential processes in the mammalian bacterial pathogenStaphylococcus aureus. Understanding the gene products involved in the genetic regulation of Fe uptake and usage and the physiological adaptations thatS. aureususes to survive in Fe-depleted conditions provides insight into pathogenesis. Herein, we demonstrate that the DNA-binding activity of the ferric uptake regulator transcriptional repressor is alleviated under Fe limitation, but uniquely, inS. aureus, alleviation requires the presence of Fpa.  more » « less
Award ID(s):
1750624
PAR ID:
10614623
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Lemon, Katherine P
Publisher / Repository:
American Society of Microbiology
Date Published:
Journal Name:
mBio
Volume:
15
Issue:
11
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake. We demonstrate that an S. aureus Δfur mutant has decreased expression of acnA, which codes for the Fe-dependent enzyme aconitase. This prevents the Δfur mutant from growing with amino acids as sole carbon and energy sources. We used a suppressor screen to exploit this phenotype and determined that a mutation that decreases the transcription of isrR, which produces a regulatory RNA, increased acnA expression, thereby enabling growth. Directed mutation of bases predicted to facilitate the interaction between the acnA transcript and IsrR, decreased the ability of IsrR to control acnA expression in vivo and IsrR bound to the acnA transcript in vitro. IsrR also bound transcripts coding the alternate tricarboxylic acid cycle proteins sdhC, mqo, citZ and citM. Whole-cell metal analyses suggest that IsrR promotes Fe uptake and increases intracellular Fe not ligated by macromolecules. Lastly, we determined that Fur and IsrR promote infection using murine skin and acute pneumonia models. 
    more » « less
  2. Gottesman, Susan (Ed.)
    ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O 2 -dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O 2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes. 
    more » « less
  3. Abstract Bacteria contain conserved mechanisms to control the intracellular levels of metal ions. Metalloregulatory transcription factors bind metal cations and play a central role in regulating gene expression of metal transporters. Often, these transcription factors regulate transcription by binding to a specific DNA sequence in the promoter region of target genes. Understanding the preferred DNA‐binding sequence for transcriptional regulators can help uncover novel gene targets and provide insight into the biological role of the transcription factor in the host organism. Here, we identify consensus DNA‐binding sequences and subsequent transcription regulatory networks for two metalloregulators from the ferric uptake regulator (FUR) and diphtheria toxin repressor (DtxR) superfamilies inThermus thermophilusHB8. By homology search, we classify the DtxR homolog as a manganese‐specific, MntR (TtMntR), and the FUR homolog as a peroxide‐sensing, PerR (TtPerR). Both transcription factors repress separate ZIP transporter genes in vivo, andTtPerR acts as a bifunctional transcription regulator by activating the expression of ferric and hemin transport systems. We showTtPerR andTtMntR bind DNA in the presence of manganese in vitro and in vivo; however,TtPerR is unable to bind DNA in the presence of iron, likely due to iron‐mediated histidine oxidation. Unlike canonical PerR homologs,TtPerR does not appear to contribute to peroxide detoxification. Instead, theTtPerR regulon and DNA binding sequence are more reminiscent of Fur or Mur homologs. Collectively, these results highlight the similarities and differences between two metalloregulatory superfamilies and underscore the interplay of manganese and iron in transcription factor regulation. 
    more » « less
  4. It was previously postulated that when intracellular free iron content is elevated in bacteria, the Ferric uptake regulator (Fur) binds its co-repressor a mononuclear ferrous iron to regulate intracellular iron homeostasis. However, the proposed iron-bound Fur had not been identified in any bacteria. In previous studies, we have demonstrated that Escherichia coli Fur binds a [2Fe-2S] cluster in response to elevation of intracellular free iron content, and that binding of the [2Fe-2S] cluster turns on Fur as an active repressor to bind a specific DNA sequence known as the Fur-box. Here we find that the iron-sulfur cluster assembly scaffold protein IscU is required for the [2Fe-2S] cluster assembly in Fur, as deletion of IscU inhibits the [2Fe-2S] cluster assembly in Fur and prevents activation of Fur as a repressor in E. coli cells in response to elevation of intracellular free iron content. Additional studies reveal that IscU promotes the [2Fe-2S] cluster assembly in apo-form Fur and restores its Fur-box binding activity in vitro. While IscU is also required for the [2Fe-2S] cluster assembly in the Haemophilus influenzae Fur in E. coli cells, deletion of IscU does not significantly affect the [2Fe-2S] cluster assembly in the E. coli ferredoxin and siderophore-reductase FhuF. Our results suggest that IscU may have a unique role for the [2Fe-2S] cluster assembly in Fur, and that regulation of intracellular iron homeostasis is closely coupled with iron-sulfur cluster biogenesis in E. coli. 
    more » « less
  5. Escherichia coli Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster, not a mononuclear iron, when the intracellular free iron content is elevated in E. coli cells. Here we report that the C-terminal domain (residues 83-148) of E. coli Fur (Fur-CTD) is sufficient to bind the [2Fe-2S] cluster in response to elevation of the intracellular free iron content in E. coli cells. Deletion of gene fur in E. coli cells increases the intracellular free iron content and promotes the [2Fe-2S] cluster binding in the Fur-CTD in the cells grown in LB medium under aerobic growth conditions. When the Fur-CTD is expressed in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron, the Fur-CTD also progressively binds a [2Fe-2S] cluster with a maximum occupancy of about 36%. Like the E. coli Fur-CTD, the CTD of the Haemophilus influenzae Fur can also bind a [2Fe-2S] cluster in wild type E. coli cells grown in M9 medium supplemented with increasing concentrations of iron, indicating that binding of the [2Fe-2S] cluster in the C-terminal domain is highly conserved among Fur proteins. The results suggest that the Fur-CTD can be used as a physiological probe to assess the intracellular free iron content in bacteria. 
    more » « less