skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: SL(2,ℤ) cosmological attractors
Abstract We study cosmological theory where the kinetic term and potential have SL(2,ℤ) symmetry. Potentials have a plateau at large values of the inflaton field, where the axion forms a flat direction. Due to the underlying hyperbolic geometry and special features of SL(2,ℤ) potentials, the theory exhibits an α-attractor behavior: its cosmological predictions are stable with respect to significant modifications of the SL(2,ℤ) invariant potentials. We present a supersymmetric version of this theory in the framework ofD3 induced geometric inflation. The choice ofαis determined by underlying string compactification. For example, in a CY compactification withT2, one has 3α= 1, the lowest discrete Poincaré disk target for LiteBIRD.  more » « less
Award ID(s):
2310429
PAR ID:
10614666
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2025
Issue:
04
ISSN:
1475-7516
Page Range / eLocation ID:
045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study electric-magnetic duality in compactifications of M-theory on twisted connected sum (TCS) G 2 manifolds via duality with F-theory. Specifically, we study the physics of the D3-branes in F-theory compactified on a Calabi-Yau fourfold Y , dual to a compactification of M-theory on a TCS G 2 manifold X . $$ \mathcal{N} $$ N = 2 supersymmetry is restored in an appropriate geometric limit. In that limit, we demonstrate that the dual of D3-branes probing seven-branes corresponds to the shrinking of certain surfaces and curves, yielding light particles that may carry both electric and magnetic charges. We provide evidence that the Minahan-Nemeschansky theories with E n flavor symmetry may be realized in this way. The SL(2 , ℤ) monodromy of the 3/7-brane system is dual to a Fourier-Mukai transform of the dual IIA/M-theory geometry in this limit, and we extrapolate this monodromy action to the global compactification. Away from the limit, the theory is broken to $$ \mathcal{N} $$ N = 1 supersymmetry by a D-term. 
    more » « less
  2. Abstract We investigate the global structure of the recently discovered family of SL(2,ℤ)-invariant potentials describing inflationary α-attractors. These potentials have an inflationary plateau consisting of the fundamental domain and its images fully covering the upper part of the Poincaré half-plane. Meanwhile, the lower part of the half-plane is covered by an infinitely large number of ridges, which, at first glance, are too sharp to support inflation. However, we show that this apparent sharpness is just an illusion created by hyperbolic geometry, and each of these ridges is physically equivalent to the inflationary plateau in the upper part of the Poincaré half-plane. 
    more » « less
  3. A<sc>bstract</sc> An important problem in Quantum Field Theory (QFT) is to understand the structures of observables on spacetime manifolds of nontrivial topology. Such observables arise naturally when studying physical systems at finite temperature and/or finite volume and encode subtle properties of the underlying microscopic theory that are often obscure on the flat spacetime. Locality of the QFT implies that these observables can be constructed from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT), thanks to the operator-state correspondence, we have a non-perturbative understanding of the Hilbert space on a spatial sphere. However it remains a challenge to consider more general spatial manifolds. Here we study CFTs in spacetime dimensionsd >2 on the spatial manifoldT2× ℝd−3which is one of the simplest manifolds beyond the spherical topology. We focus on the ground state in this Hilbert space and analyze universal properties of the ground state energy, also commonly known as the Casimir energy, which is a nontrivial function of the complex structure moduliτof the torus. The Casimir energy is subject to constraints from modular invariance on the torus which we spell out using PSL(2,ℤ) spectral theory. Moreover we derive a simple universal formula for the Casimir energy in the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of the CFT, with exponentially small corrections from worldline instantons. We illustrate our formula with explicit examples from well-known CFTs including the criticalO(N) model ind= 3 and holographic CFTs ind ≥3. 
    more » « less
  4. A<sc>bstract</sc> We consider the 𝒩 = (2, 2) AdS3/CFT2dualities proposed by Eberhardt, where the bulk geometry is AdS3× (S3×T4)/ℤk, and the CFT is a deformation of the symmetric orbifold of the supersymmetric sigma modelT4/ℤk(withk= 2, 3, 4, 6). The elliptic genera of the two sides vanish due to fermionic zero modes, so for microstate counting applications one must consider modified supersymmetric indices. In an analysis similar to that of Maldacena, Moore, and Strominger for the standard 𝒩 = (4, 4) case ofT4, we study the appropriate helicity-trace index of the boundary CFTs. We encounter a strange phenomenon where a saddle-point analysis of our indices reproduces only a fraction (respectively$$ \frac{1}{2} $$ 1 2 ,$$ \frac{2}{3} $$ 2 3 ,$$ \frac{3}{4} $$ 3 4 ,$$ \frac{5}{6} $$ 5 6 ) of the Bekenstein-Hawking entropy of the associated macroscopic black branes. 
    more » « less
  5. A<sc>bstract</sc> We study 1 + 1-dimensional SU(N) gauge theory coupled to one adjoint multiplet of Majorana fermions on a small spatial circle of circumferenceL. Using periodic boundary conditions, we derive the effective action for the quantum mechanics of the holonomy and the fermion zero modes in perturbation theory up to order (gL)3. When the adjoint fermion mass-squared is tuned tog2N/(2π), the effective action is found to be an example of supersymmetric quantum mechanics with a nontrivial superpotential. We separate the states into theℤNcenter symmetry sectors (universes) labeled byp= 0, . . . ,N– 1 and show that in one of the sectors the supersymmetry is unbroken, while in the others it is broken spontaneously. These results give us new insights into the (1, 1) supersymmetry of adjoint QCD2, which has previously been established using light-cone quantization. When the adjoint mass is set to zero, our effective Hamiltonian does not depend on the fermions at all, so that there are 2N−1degenerate sectors of the Hilbert space. This construction appears to provide an explicit realization of the extended symmetry of the massless model, where there are 22N−2operators that commute with the Hamiltonian. We also generalize our results to other gauge groupsG, for which supersymmetry is found at the adjoint mass-squaredg2h/(2π), wherehis the dual Coxeter number ofG. 
    more » « less