skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Schwinger vs Coleman: Magnetic charge renormalization
A<sc>bstract</sc> The kinetic mixing of two U(1) gauge theories can result in a massless photon that has perturbative couplings to both electric and magnetic charges. This framework can be used to perturbatively calculate in a quantum field theory with both kinds of charge. Here we reexamine the running of the magnetic charge, where the calculations of Schwinger and Coleman sharply disagree. We calculate the running of both electric and magnetic couplings and show that the disagreement between Schwinger and Coleman is due to an incomplete summation of topological terms in the perturbation series. We present a momentum space prescription for calculating the loop corrections in which the topological terms can be systematically separated for resummation. Somewhat in the spirit of modern amplitude methods we avoid using a vector potential and use the field strength itself, thereby trading gauge redundancy for the geometric redundancy of Stokes surfaces. The resulting running of the couplings demonstrates that Dirac charge quantization is independent of renormalization scale, as Coleman predicted. As a simple application we also bound the parameter space of magnetically charged states through the experimental measurement of the running of electromagnetic coupling.  more » « less
Award ID(s):
2210067
PAR ID:
10614773
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Electric fields can spontaneously decay via the Schwinger effect, the nucleation of a charged particle-anti particle pair separated by a critical distanced. What happens if the available distance is smaller thand? Previous work on this question has produced contradictory results. Here, we study the quantum evolution of electric fields when the field points in a compact direction with circumferenceL < dusing the massive Schwinger model, quantum electrodynamics in one space dimension with massive charged fermions. We uncover a new and previously unknown set of instantons that result in novel physics that disagrees with all previous estimates. In parameter regimes where the field value can be well-defined in the quantum theory, generic initial fieldsEare in factstable and do not decay, while initial values that are quantized in half-integer units of the chargeE= (k/2)gwithk∈ ℤoscillate in timefrom +(k/2)gto−(k/2)g, with exponentially small probability of ever taking any other value. We verify our results with four distinct techniques: numerically by measuring the decay directly in Lorentzian time on the lattice, numerically using the spectrum of the Hamiltonian, numerically and semi-analytically using the bosonized description of the Schwinger model, and analytically via our instanton estimate. 
    more » « less
  2. A<sc>bstract</sc> We develop a Schwinger-Keldysh effective field theory describing the hydrodynamics of a fluid with conserved charge and dipole moments, together with conserved momentum. The resulting hydrodynamic modes are highly unusual, including sound waves with quadratic (magnon-like) dispersion relation and subdiffusive decay rate. Hydrodynamics itself is unstable below four spatial dimensions. We show that the momentum density is, at leading order, the Goldstone boson for a dipole symmetry which appears spontaneously broken at finite charge density. Unlike an ordinary fluid, the presence or absence of energy conservation qualitatively changes the decay rates of the hydrodynamic modes. This effective field theory naturally couples to curved spacetime and background gauge fields; in the flat spacetime limit, we reproduce the “mixed rank tensor fields” previously coupled to fracton matter. 
    more » « less
  3. A bstract Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure SU( N ) $$ \mathcal{N} $$ N = 2 gauge theory in four dimensions. At this point N − 1 mutually local magnetic monopoles become massless simultaneously, and in a suitable duality frame the gauge couplings logarithmically run to zero. We explicitly calculate the leading threshold corrections to this logarithmic running from the Seiberg-Witten solution by adapting a method previously introduced by D’Hoker and Phong. We compare our computation to existing results in the literature; this includes results specific to SU(2) and SU(3) gauge theories, the large- N results of Douglas and Shenker, as well as results obtained by appealing to integrable systems or topological strings. We find broad agreement, while also clarifying some lingering inconsistencies. Finally, we explicitly extend the results of Douglas and Shenker to finite N , finding exact agreement with our first calculation. 
    more » « less
  4. Standard axion electrodynamics has two closely related features. First, the coupling of a massless axion field to photons is quantized, in units proportional to the electric gauge coupling squared. Second, the equations of motion tell us that a time-dependent axion field in a background magnetic field sources an effective electric current, but a time-dependent axion field in a background electric field has no effect. These properties, which manifestly violate electric-magnetic duality, play a crucial role in experimental searches for axions. Recently, electric-magnetic duality has been used to motivate the possible existence of non-standard axion couplings, which can both violate the usual quantization rule and exchange the roles of electric and magnetic fields in axion electrodynamics. We show that these non-standard couplings can be derived from SL(2,ℤ) duality, but that they come at a substantial cost: in non-standard axion electrodynamics, all electrically charged particles become dyons when the axion traverses its field range, in a dual form of the standard Witten effect monodromy. This implies that there are dyons near the weak scale, leads to a large axion mass induced by Standard Model fermion loops, and dramatically alters Higgs physics. We conclude that non-standard axion electrodynamics, although interesting to consider in abstract quantum field theory, is not phenomenologically viable. 
    more » « less
  5. A<sc>bstract</sc> We consider a heterotic version of six-dimensional Kodaira-Spencer gravity derived from the heterotic superpotential. We compute the one-loop partition function and find it can be expressed as a product of holomorphic Ray-Singer torsions. We discuss its topological properties and potential gauge and gravitational anomalies. We show these anomalies can be cancelled using Green-Schwarz-like counter-terms. We also discuss the dependence on the background geometry, and in particular the choice of hermitian metric needed for quantisation. Given suitable topological constraints, this dependence may again be cancelled by the addition of purely background-dependent counter-terms. We also explain how our methods provide the one-loop partition functions of a large class of more general holomorphic field theories in terms of holomorphic Ray-Singer torsions. 
    more » « less