skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Co(III)-peroxo-arylboronate complex formed by nucleophilic reaction of a Co(III)-peroxo species
Award ID(s):
2102339
PAR ID:
10614886
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ScienceDirect
Date Published:
Journal Name:
Journal of Inorganic Biochemistry
Volume:
256
Issue:
C
ISSN:
0162-0134
Page Range / eLocation ID:
112552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. null (Ed.)
  3. In order to shed light on metal-dependent mechanisms for O–O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)– and Mn(III)–peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, as well as a Co-containing artificial leaf inspired by nature’s photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)–peroxo compound differ noticeably from the analogous Mn(III)–peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)–peroxo is more localized on the peroxo in an antibonding π*(O–O) orbital, whereas the HOMO of the structurally analogous Mn(III)–peroxo is delocalized over both the metal d-orbitals and peroxo π*(O–O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O–O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O–O bond of the former relative to the latter. 
    more » « less