skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 4, 2025

Title: Polynomial Time Convergence of the Iterative Evaluation of Datalogo Programs
Datalogois an extension of Datalog that allows for aggregation and recursion over an arbitrary commutative semiring. Like Datalog, Datalogo programs can be evaluated via the natural iterative algorithm until a fixed point is reached. However unlike Datalog, the natural iterative evaluation of some Datalogo programs over some semirings may not converge. It is known that the commutative semirings for which the iterative evaluation of Datalogo programs is guaranteed to converge are exactly those semirings that are stable. Previously, the best known upper bound on the number of iterations until convergence over p-stable semirings is ∑i=1 ^n (p+2)i= Θ(pn) steps, where n is (essentially) the output size. We establish that, in fact, the natural iterative evaluation of a Datalogo program over a p-stable semiring converges within a polynomial number of iterations. In particular our upper bound is O(σ p n2( n2lg Λ + lg σ)) where σ is the number of elements in the semiring present in either the input databases or the Datalogo program, and λ is the maximum number of terms in any product in the Datalogo program.  more » « less
Award ID(s):
1844939 2535599 2423106 2121745
PAR ID:
10614972
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proc. ACM Manag. Data (ACM PODS)
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
2
Issue:
5
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cormode, Graham; Shekelyan, Michael (Ed.)
    Datalog^∘ is an extension of Datalog, where instead of a program being a collection of union of conjunctive queries over the standard Boolean semiring, a program may now be a collection of sum-product queries over an arbitrary commutative partially ordered pre-semiring. Datalog^∘ is more powerful than Datalog in that its additional algebraic structure alows for supporting recursion with aggregation. At the same time, Datalog^∘ retains the syntactic and semantic simplicity of Datalog: Datalog^∘ has declarative least fixpoint semantics. The least fixpoint can be found via the naïve evaluation algorithm that repeatedly applies the immediate consequence operator until no further change is possible. It was shown in [Mahmoud Abo Khamis et al., 2022] that, when the underlying semiring is p-stable, then the naïve evaluation of any Datalog^∘ program over the semiring converges in a finite number of steps. However, the upper bounds on the rate of convergence were exponential in the number n of ground IDB atoms. This paper establishes polynomial upper bounds on the convergence rate of the naïve algorithm on linear Datalog^∘ programs, which is quite common in practice. In particular, the main result of this paper is that the convergence rate of linear Datalog^∘ programs under any p-stable semiring is O(pn³). Furthermore, we show a matching lower bound by constructing a p-stable semiring and a linear Datalog^∘ program that requires Ω(pn³) iterations for the naïve iteration algorithm to converge. Next, we study the convergence rate in terms of the number of elements in the semiring for linear Datalog^∘ programs. When L is the number of elements, the convergence rate is bounded by O(pn log L). This significantly improves the convergence rate for small L. We show a nearly matching lower bound as well. 
    more » « less
  2. Recursive queries have been traditionally studied in the framework of datalog, a language that restricts recursion to monotone queries over sets, which is guaranteed to converge in polynomial time in the size of the input. But modern big data systems require recursive computations beyond the Boolean space. In this article, we study the convergence of datalog when it is interpreted over an arbitrary semiring. We consider an ordered semiring, define the semantics of a datalog program as a least fixpoint in this semiring, and study the number of steps required to reach that fixpoint, if ever. We identify algebraic properties of the semiring that correspond to certain convergence properties of datalog programs. Finally, we describe a class of ordered semirings on which one can use the semi-naïve evaluation algorithm on any datalog program. 
    more » « less
  3. Interpretations of logical formulas over semirings (other than the Boolean semiring) have applications in various areas of computer science including logic, AI, databases, and security. Such interpretations provide richer information beyond the truth or falsity of a statement. Examples of such semirings include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring. The present work investigates the complexity of constraint optimization problems over semirings. The generic optimization problem we study is the following: Given a propositional formula phi over n variable and a semiring (K,+, . ,0,1), find the maximum value over all possible interpretations of phi over K. This can be seen as a generalization of the well-known satisfiability problem (a propositional formula is satisfiable if and only if the maximum value over all interpretations/assignments over the Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value. In this work, we first focus on these optimization problems over the Viterbi semiring, which we call optConfVal and optConf. We first show that for general propositional formulas in negation normal form, optConfVal and optConf are in FP^NP. We then investigate optConf when the input formula phi is represented in the conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of optConf as a function of the number of maximum satisfiable clauses. In particular, we show that if r is the maximum number of satisfiable clauses in a CNF formula with m clauses, then its optConf value is at most 1/4^(m-r). Building on this we establish that optConf for CNF formulae is hard for the complexity class FP^NP[log]. We also design polynomial-time approximation algorithms and establish an inapproximability for optConfVal. We establish similar complexity results for these optimization problems over other semirings including tropical, fuzzy, and access control semirings. 
    more » « less
  4. Williams Brian; Chen Yiling; Neville Jennifer (Ed.)
    Interpretations of logical formulas over semirings (other than the Boolean semiring) have applications in various areas of computer science including logic, AI, databases, and security. Such interpretations provide richer information beyond the truth or falsity of a statement. Examples of such semirings include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring. The present work investigates the complexity of constraint optimization problems over semirings. The generic optimization problem we study is the following: Given a propositional formula $$\varphi$$ over $$n$$ variable and a semiring $$(K,+,\cdot,0,1)$$, find the maximum value over all possible interpretations of $$\varphi$$ over $$K$$. This can be seen as a generalization of the well-known satisfiability problem (a propositional formula is satisfiable if and only if the maximum value over all interpretations/assignments over the Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value. In this work, we first focus on these optimization problems over the Viterbi semiring, which we call \optrustval\ and \optrust. We first show that for general propositional formulas in negation normal form, \optrustval\ and {\optrust} are in $${\mathrm{FP}}^{\mathrm{NP}}$$. We then investigate {\optrust} when the input formula $$\varphi$$ is represented in the conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of {\optrust} as a function of the number of maximum satisfiable clauses. In particular, we show that if $$r$$ is the maximum number of satisfiable clauses in a CNF formula with $$m$$ clauses, then its $$\optrust$$ value is at most $$1/4^{m-r}$$. Building on this we establish that {\optrust} for CNF formulae is hard for the complexity class $${\mathrm{FP}}^{\mathrm{NP}[\log]}$$. We also design polynomial-time approximation algorithms and establish an inapproximability for {\optrustval}. We establish similar complexity results for these optimization problems over other semirings including tropical, fuzzy, and access control semirings. 
    more » « less
  5. null (Ed.)
    Semiring provenance is a successful approach, originating in database theory, to providing detailed information on how atomic facts combine to yield the result of a query. In particular, general provenance semirings of polynomials or formal power series provide precise descriptions of the evaluation strategies or “proof trees” for the query. By evaluating these descriptions in specific application semirings, one can extract practical information for instance about the confidence of a query or the cost of its evaluation. This paper develops semiring provenance for very general logical languages featuring the full interaction between negation and fixed-point inductions or, equivalently, arbitrary interleavings of least and greatest fixed points. This also opens the door to provenance analysis applications for modal μ-calculus and temporal logics, as well as for finite and infinite model-checking games. Interestingly, the common approach based on Kleene’s Fixed-Point Theorem for ω-continuous semirings is not sufficient for these general languages. We show that an adequate framework for the provenance analysis of full fixed-point logics is provided by semirings that are (1) fully continuous, and (2) absorptive. Full continuity guarantees that provenance values of least and greatest fixed-points are well-defined. Absorptive semirings provide a symmetry between least and greatest fixed-points and make sure that provenance values of greatest fixed points are informative. We identify semirings of generalized absorptive polynomials S∞[X] and prove universal properties that make them the most general appropriate semirings for our framework. These semirings have the further property of being (3) chain-positive, which is responsible for having truth-preserving interpretations that give non-zero values to all true formulae. We relate the provenance analysis of fixed-point formulae with provenance values of plays and strategies in the associated model-checking games. Specifically, we prove that the provenance value of a fixed point formula gives precise information on the evaluation strategies in these games. 
    more » « less