Interpretations of logical formulas over semirings (other than the Boolean semiring) have applications in various areas of computer science including logic, AI, databases, and security. Such interpretations provide richer information beyond the truth or falsity of a statement. Examples of such semirings include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring. The present work investigates the complexity of constraint optimization problems over semirings. The generic optimization problem we study is the following: Given a propositional formula phi over n variable and a semiring (K,+, . ,0,1), find the maximum value over all possible interpretations of phi over K. This can be seen as a generalization of the well-known satisfiability problem (a propositional formula is satisfiable if and only if the maximum value over all interpretations/assignments over the Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value. In this work, we first focus on these optimization problems over the Viterbi semiring, which we call optConfVal and optConf. We first show that for general propositional formulas in negation normal form, optConfVal and optConf are in FP^NP. We then investigate optConf when the input formula phi is represented in the conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of optConf as a function of the number of maximum satisfiable clauses. In particular, we show that if r is the maximum number of satisfiable clauses in a CNF formula with m clauses, then its optConf value is at most 1/4^(m-r). Building on this we establish that optConf for CNF formulae is hard for the complexity class FP^NP[log]. We also design polynomial-time approximation algorithms and establish an inapproximability for optConfVal. We establish similar complexity results for these optimization problems over other semirings including tropical, fuzzy, and access control semirings.
more »
« less
Constraint Optimization over Semirings
Interpretations of logical formulas over semirings (other than the Boolean semiring) have applications in various areas of computer science including logic, AI, databases, and security. Such interpretations provide richer information beyond the truth or falsity of a statement. Examples of such semirings include Viterbi semiring, min-max or access control semiring, tropical semiring, and fuzzy semiring. The present work investigates the complexity of constraint optimization problems over semirings. The generic optimization problem we study is the following: Given a propositional formula $$\varphi$$ over $$n$$ variable and a semiring $$(K,+,\cdot,0,1)$$, find the maximum value over all possible interpretations of $$\varphi$$ over $$K$$. This can be seen as a generalization of the well-known satisfiability problem (a propositional formula is satisfiable if and only if the maximum value over all interpretations/assignments over the Boolean semiring is 1). A related problem is to find an interpretation that achieves the maximum value. In this work, we first focus on these optimization problems over the Viterbi semiring, which we call \optrustval\ and \optrust. We first show that for general propositional formulas in negation normal form, \optrustval\ and {\optrust} are in $${\mathrm{FP}}^{\mathrm{NP}}$$. We then investigate {\optrust} when the input formula $$\varphi$$ is represented in the conjunctive normal form. For CNF formulae, we first derive an upper bound on the value of {\optrust} as a function of the number of maximum satisfiable clauses. In particular, we show that if $$r$$ is the maximum number of satisfiable clauses in a CNF formula with $$m$$ clauses, then its $$\optrust$$ value is at most $$1/4^{m-r}$$. Building on this we establish that {\optrust} for CNF formulae is hard for the complexity class $${\mathrm{FP}}^{\mathrm{NP}[\log]}$$. We also design polynomial-time approximation algorithms and establish an inapproximability for {\optrustval}. We establish similar complexity results for these optimization problems over other semirings including tropical, fuzzy, and access control semirings.
more »
« less
- Award ID(s):
- 2130536
- PAR ID:
- 10447253
- Editor(s):
- Williams Brian; Chen Yiling; Neville Jennifer
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Page Range / eLocation ID:
- 4070--4077
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Semiring provenance is a successful approach, originating in database theory, to providing detailed information on how atomic facts combine to yield the result of a query. In particular, general provenance semirings of polynomials or formal power series provide precise descriptions of the evaluation strategies or “proof trees” for the query. By evaluating these descriptions in specific application semirings, one can extract practical information for instance about the confidence of a query or the cost of its evaluation. This paper develops semiring provenance for very general logical languages featuring the full interaction between negation and fixed-point inductions or, equivalently, arbitrary interleavings of least and greatest fixed points. This also opens the door to provenance analysis applications for modal μ-calculus and temporal logics, as well as for finite and infinite model-checking games. Interestingly, the common approach based on Kleene’s Fixed-Point Theorem for ω-continuous semirings is not sufficient for these general languages. We show that an adequate framework for the provenance analysis of full fixed-point logics is provided by semirings that are (1) fully continuous, and (2) absorptive. Full continuity guarantees that provenance values of least and greatest fixed-points are well-defined. Absorptive semirings provide a symmetry between least and greatest fixed-points and make sure that provenance values of greatest fixed points are informative. We identify semirings of generalized absorptive polynomials S∞[X] and prove universal properties that make them the most general appropriate semirings for our framework. These semirings have the further property of being (3) chain-positive, which is responsible for having truth-preserving interpretations that give non-zero values to all true formulae. We relate the provenance analysis of fixed-point formulae with provenance values of plays and strategies in the associated model-checking games. Specifically, we prove that the provenance value of a fixed point formula gives precise information on the evaluation strategies in these games.more » « less
-
Adding blocked clauses to a CNF formula can substantially speed up SAT-solving, both in theory and practice. In theory, the addition of blocked clauses can exponentially reduce the length of the shortest refutation for a formula [17, 19]. In practice, it has been recently shown that the runtime of CDCL solvers decreases significantly for certain instance families when blocked clauses are added as a preprocessing step [10,22]. This fact is in contrast to, but not in contradiction with, prior results showing that Blocked- Clause Elimination (BCE) is sometimes an effective preprocessing step [14,15]. We suggest that the practical role of blocked clauses in SAT-solving might be richer than expected. Concretely, we propose a theoretical study of the complexity of Blocked-Clause Addition (BCA) as a preprocessing step for SAT-solving, and in particular, consider the problem of adding the maximum number of blocked clauses of a given arity k to an input formula F. While BCE is a confluent process, meaning that the order in which blocked clauses are eliminated is irrelevant, this is not the case for BCA: adding a blocked clause to a formula might unblock a different clause that was previously blocked. This order-sensitivity turns out to be a crucial obstacle for carrying out BCA efficiently as a preprocessing step. Our main result is that computing the maximum number of k-ary blocked clauses that can be added to an input formula F is NP-hard for every k ≥ 2.more » « less
-
Given a Boolean formula ϕ(x) in conjunctive normal form (CNF), the density of states counts the number of variable assignments that violate exactly e clauses, for all values of e. Thus, the density of states is a histogram of the number of unsatisfied clauses over all possible assignments. This computation generalizes both maximum-satisfiability (MAX-SAT) and model counting problems and not only provides insight into the entire solution space, but also yields a measure for the hardness of the problem instance. Consequently, in real-world scenarios, this problem is typically infeasible even when using state-of-the-art algorithms. While finding an exact answer to this problem is a computationally intensive task, we propose a novel approach for estimating density of states based on the concentration of measure inequalities. The methodology results in a quadratic unconstrained binary optimization (QUBO), which is particularly amenable to quantum annealing-based solutions. We present the overall approach and compare results from the D-Wave quantum annealer against the best-known classical algorithms such as the Hamze-de Freitas-Selby (HFS) algorithm and satisfiability modulo theory (SMT) solvers.more » « less
-
Recursive queries have been traditionally studied in the framework of datalog, a language that restricts recursion to monotone queries over sets, which is guaranteed to converge in polynomial time in the size of the input. But modern big data systems require recursive computations beyond the Boolean space. In this article, we study the convergence of datalog when it is interpreted over an arbitrary semiring. We consider an ordered semiring, define the semantics of a datalog program as a least fixpoint in this semiring, and study the number of steps required to reach that fixpoint, if ever. We identify algebraic properties of the semiring that correspond to certain convergence properties of datalog programs. Finally, we describe a class of ordered semirings on which one can use the semi-naïve evaluation algorithm on any datalog program.more » « less