skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 9, 2026

Title: Efficient Algorithms for Cardinality Estimation and Conjunctive Query Evaluation With Simple Degree Constraints
Cardinality estimation and conjunctive query evaluation are two of the most fundamental problems in database query processing. Recent work proposed, studied, and implemented a robust and practical information-theoretic cardinality estimation framework. In this framework, the estimator is the cardinality upper bound of a conjunctive query subject to ''degree-constraints'', which model a rich set of input data statistics. For general degree constraints, computing this bound is computationally hard. Researchers have naturally sought efficiently computable relaxed upper bounds that are as tight as possible. The polymatroid bound is the tightest among those relaxed upper bounds. While it is an open question whether the polymatroid bound can be computed in polynomial-time in general, it is known to be computable in polynomial-time for some classes of degree constraints. Our focus is on a common class of degree constraints called simple degree constraints. Researchers had not previously determined how to compute the polymatroid bound in polynomial time for this class of constraints. Our first main result is a polynomial time algorithm to compute the polymatroid bound given simple degree constraints. Our second main result is a polynomial-time algorithm to compute a ''proof sequence'' establishing this bound. This proof sequence can then be incorporated in the PANDA-framework to give a faster algorithm to evaluate a conjunctive query. In addition, we show computational limitations to extending our results to broader classes of degree constraints. Finally, our technique leads naturally to a new relaxed upper bound called theflow bound,which is computationally tractable.  more » « less
Award ID(s):
2535599
PAR ID:
10614974
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proc. ACM Manag. Data (ACM PODS)
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
3
Issue:
2
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating the cardinality of the output of a query is a fundamental problem in database query processing. In this article, we overview a recently published contribution that casts the cardinality estimation problem as linear optimization and computes guaranteed upper bounds on the cardinality of the output for any full conjunctive query. The objective of the linear program is to maximize the joint entropy of the query variables and its constraints are the Shannon information inequalities and new information inequalities involving ℓp-norms of the degree sequences of the join attributes. The bounds based on arbitrary norms can be asymptotically lower than those based on the ℓ1 and ℓ∞ norms, which capture the cardinalities and respectively the max-degrees of the input relations. They come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when each degree sequence is on one join attribute. 
    more » « less
  2. Cardinality Estimation is to estimate the size of the output of a query without computing it, by using only statistics on the input relations. Existing estimators try to return an unbiased estimate of the cardinality: this is notoriously difficult. A new class of estimators have been proposed recently, called pessimistic estimators, which compute a guaranteed upper bound on the query output. Two recent advances have made pessimistic estimators practical. The first is the recent observation that degree sequences of the input relations can be used to compute query upper bounds. The second is a long line of theoretical results that have developed the use of information theoretic inequalities for query upper bounds. This paper is a short overview of pessimistic cardinality estimators, contrasting them with traditional estimators. 
    more » « less
  3. Roy, Sudeepa; Kara, Ahmet (Ed.)
    In the last decade, various works have used statistics on relations to improve both the theory and practice of conjunctive query execution. Starting with the AGM bound which took advantage of relation sizes, later works incorporated statistics like functional dependencies and degree constraints. Each new statistic prompted work along two lines; bounding the size of conjunctive query outputs and worst-case optimal join algorithms. In this work, we continue in this vein by introducing a new statistic called a partition constraint. This statistic captures latent structure within relations by partitioning them into sub-relations which each have much tighter degree constraints. We show that this approach can both refine existing cardinality bounds and improve existing worst-case optimal join algorithms. 
    more » « less
  4. Estimating the output size of a query is a fundamental yet longstanding problem in database query processing. Traditional cardinality estimators used by database systems can routinely underestimate the true output size by orders of magnitude, which leads to significant system performance penalty. Recently, upper bounds have been proposed that are based on information inequalities and incorporate sizes and max-degrees from input relations, yet their main benefit is limited to cyclic queries, because they degenerate to rather trivial formulas on acyclic queries. We introduce a significant extension of the upper bounds, by incorporating lp-norms of the degree sequences of join attributes. Our bounds are significantly lower than previously known bounds, even when applied to acyclic queries. These bounds are also based on information theory, they come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when all degrees are ''simple''. 
    more » « less
  5. In recent years, several information-theoretic upper bounds have been introduced on the output size and evaluation cost of database join queries. These bounds vary in their power depending on both the type of statistics on input relations and the query plans that they support. This motivated the search for algorithms that can compute the output of a join query in times that are bounded by the corresponding information-theoretic bounds. In this paper, we describe PANDA, an algorithm that takes a Shannon-inequality that underlies the bound, and translates each proof step into an algorithmic step corresponding to some database operation. PANDA computes answers to a conjunctive query in time given by the the submodular width plus the output size of the query. The version in this paper represents a significant simplification of the original version [ANS, PODS'17]. Comment: 42 pages. This is the TheoretiCS journal version 
    more » « less