In recent years, several information-theoretic upper bounds have been introduced on the output size and evaluation cost of database join queries. These bounds vary in their power depending on both the type of statistics on input relations and the query plans that they support. This motivated the search for algorithms that can compute the output of a join query in times that are bounded by the corresponding information-theoretic bounds. In this paper, we describe PANDA, an algorithm that takes a Shannon-inequality that underlies the bound, and translates each proof step into an algorithmic step corresponding to some database operation. PANDA computes answers to a conjunctive query in time given by the the submodular width plus the output size of the query. The version in this paper represents a significant simplification of the original version [ANS, PODS'17]. Comment: 42 pages. This is the TheoretiCS journal version 
                        more » 
                        « less   
                    
                            
                            Join Size Bounds using l p -Norms on Degree Sequences
                        
                    
    
            Estimating the output size of a query is a fundamental yet longstanding problem in database query processing. Traditional cardinality estimators used by database systems can routinely underestimate the true output size by orders of magnitude, which leads to significant system performance penalty. Recently, upper bounds have been proposed that are based on information inequalities and incorporate sizes and max-degrees from input relations, yet their main benefit is limited to cyclic queries, because they degenerate to rather trivial formulas on acyclic queries. We introduce a significant extension of the upper bounds, by incorporating lp-norms of the degree sequences of join attributes. Our bounds are significantly lower than previously known bounds, even when applied to acyclic queries. These bounds are also based on information theory, they come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when all degrees are ''simple''. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10518842
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Management of Data
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2836-6573
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Cardinality estimation is the problem of estimating the size of the output of a query, without actually evaluating the query. The cardinality estimator is a critical piece of a query optimizer, and is often the main culprit when the optimizer chooses a poor plan. This paper introduces LpBound, a pessimistic cardinality estimator for multi-join queries (acyclic or cyclic) with selection predicates and group-by clauses.LpBoundcomputes a guaranteed upper bound on the size of the query output using simple statistics on the input relations, consisting of ℓp-norms of degree sequences. The bound is the optimal solution of a linear program whose constraints encode data statistics and Shannon inequalities. We introduce two optimizations that exploit the structure of the query in order to speed up the estimation time and makeLpBoundpractical. We experimentally evaluateLpBoundagainst a range of traditional, pessimistic, and machine learning-based estimators on the JOB, STATS, and subgraph matching benchmarks. Our main finding is thatLpBoundcan be orders of magnitude more accurate than traditional estimators used in mainstream open-source and commercial database systems. Yet it has comparable low estimation time and space requirements. When injected the estimates ofLpBound, Postgres derives query plans at least as good as those derived using the true cardinalities.more » « less
- 
            Estimating the cardinality of the output of a query is a fundamental problem in database query processing. In this article, we overview a recently published contribution that casts the cardinality estimation problem as linear optimization and computes guaranteed upper bounds on the cardinality of the output for any full conjunctive query. The objective of the linear program is to maximize the joint entropy of the query variables and its constraints are the Shannon information inequalities and new information inequalities involving ℓp-norms of the degree sequences of the join attributes. The bounds based on arbitrary norms can be asymptotically lower than those based on the ℓ1 and ℓ∞ norms, which capture the cardinalities and respectively the max-degrees of the input relations. They come with a matching query evaluation algorithm, are computable in exponential time in the query size, and are provably tight when each degree sequence is on one join attribute.more » « less
- 
            We study the dynamic query evaluation problem: Given a full conjunctive query Q and a sequence of updates to the input database, we construct a data structure that supports constant-delay enumeration of the tuples in the query output after each update. We show that a sequence of N insert-only updates to an initially empty database can be executed in total time O(Nw(Q)), where w(Q) is the fractional hypertree width of Q. This matches the complexity of the static query evaluation problem for Q and a database of size N. One corollary is that the amortized time per single-tuple insert is constant for acyclic full conjunctive queries. In contrast, we show that a sequence of N inserts and deletes can be executed in total time Õ(Nw(Q')), where Q' is obtained from Q by extending every relational atom with extra variables that represent the lifespans of tuples in the database. We show that this reduction is optimal in the sense that the static evaluation runtime of Q' provides a lower bound on the total update time for the output of Q. Our approach achieves amortized optimal update times for the hierarchical and Loomis-Whitney join queries.more » « less
- 
            We study the classic set cover problem from the perspective of sub-linear algorithms. Given access to a collection of m sets over n elements in the query model, we show that sub-linear algorithms derived from existing techniques have almost tight query complexities. On one hand, first we show an adaptation of the streaming algorithm presented in [17] to the sub-linear query model, that returns an α-approximate cover using Õ(m(n/k)^1/(α–1) + nk) queries to the input, where k denotes the value of a minimum set cover. We then complement this upper bound by proving that for lower values of k, the required number of queries is , even for estimating the optimal cover size. Moreover, we prove that even checking whether a given collection of sets covers all the elements would require Ω(nk) queries. These two lower bounds provide strong evidence that the upper bound is almost tight for certain values of the parameter k. On the other hand, we show that this bound is not optimal for larger values of the parameter k, as there exists a (1 + ε)-approximation algorithm with Õ(mn/kε^2) queries. We show that this bound is essentially tight for sufficiently small constant ε, by establishing a lower bound of query complexity. Our lower-bound results follow by carefully designing two distributions of instances that are hard to distinguish. In particular, our first lower bound involves a probabilistic construction of a certain set system with a minimum set cover of size αk, with the key property that a small number of “almost uniformly distributed” modifications can reduce the minimum set cover size down to k. Thus, these modifications are not detectable unless a large number of queries are asked. We believe that our probabilistic construction technique might find applications to lower bounds for other combinatorial optimization problems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    