skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unraveling the Mechanistic Links Between Species Diversity and Infection Risk From Zoonotic Pathogens With Direct Transmission Among Reservoir Hosts: Rodent‐Orthohantavirus Systems as Models
ABSTRACT To explain patterns between anthropogenic loss of species diversity and the rise in the number of novel zoonotic diseases, the “dilution effect” hypothesis predicts that with lower species diversity, infection risk will increase. The underlying mechanisms have been largely investigated in systems where pathogen transmission is vector‐borne or environmental. Relatively less research has been conducted in systems where transmission is direct, such as with orthohantaviruses (hereafter hantaviruses) and their rodent reservoir hosts. These systems are commonly cited as supporting a negative diversity‐disease pattern. To motivate empirical research on underlying mechanisms driving this pattern, we extend a mechanistic framework that links species diversity and infection prevalence of directly transmitted zoonotic pathogens by using rodent‐hantavirus systems in the Americas as models. Additionally, we summarize empirical studies, synthesize mechanistic evidence, and identify knowledge gaps. Our findings suggest that host regulation is a key mechanism likely to drive diversity‐disease patterns in rodent‐hantavirus systems of the Americas. Other mechanisms have received less empirical support but also less attention. Although host regulation likely functions via density‐dependent transmission, and can thus change contact rates among hosts, consequences to other mechanisms have been neglected. As observed in rodent‐hantavirus systems in the Americas, we propose that for a negative diversity‐disease pattern to manifest, the primary reservoir host species should be resilient to anthropogenic disturbance but also vulnerable to competition, predation, or both, and the “diversity” measure should be associated with host density.  more » « less
Award ID(s):
2109828
PAR ID:
10614984
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
15
Issue:
6
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pathogen spillover corresponds to the transmission of a pathogen or parasite from an original host species to a novel host species, preluding disease emergence. Understanding the interacting factors that lead to pathogen transmission in a zoonotic cycle could help identify novel hosts of pathogens and the patterns that lead to disease emergence. We hypothesize that ecological and biogeographic factors drive host encounters, infection susceptibility, and cross‐species spillover transmission. Using a rodent–ectoparasite system in the Neotropics, with shared ectoparasite associations as a proxy for ecological interaction between rodent species, we assessed relationships between rodents using geographic range, phylogenetic relatedness, and ectoparasite associations to determine the roles of generalist and specialist hosts in the transmission cycle of hantavirus. A total of 50 rodent species were ranked on their centrality in a network model based on ectoparasites sharing. Geographic proximity and phylogenetic relatedness were predictors for rodents to share ectoparasite species and were associated with shorter network path distance between rodents through shared ectoparasites. The rodent–ectoparasite network model successfully predicted independent data of seven known hantavirus hosts. The model predicted five novel rodent species as potential, unrecognized hantavirus hosts in South America. Findings suggest that ectoparasite data, geographic range, and phylogenetic relatedness of wildlife species could help predict novel hosts susceptible to infection and possible transmission of zoonotic pathogens. Hantavirus is a high‐consequence zoonotic pathogen with documented animal‐to‐animal, animal‐to‐human, and human‐to‐human transmission. Predictions of new rodent hosts can guide active epidemiological surveillance in specific areas and wildlife species to mitigate hantavirus spillover transmission risk from rodents to humans. This study supports the idea that ectoparasite relationships among rodents are a proxy of host species interactions and can inform transmission cycles of diverse pathogens circulating in wildlife disease systems, including wildlife viruses with epidemic potential, such as hantavirus. 
    more » « less
  2. Wildlife species are often heavily parasitized by multiple infections simultaneously. Yet research on sylvatic transmission cycles, tend to focus on host interactions with a single parasite and neglects the influence of co- infections by other pathogens and parasites. Co-infections between macro-parasites and micro-parasites can alter mechanisms that regulate pathogenesis and are important for understanding disease emergence and dy- namics. Wildlife rodent hosts in the Lyme disease system are infected with macro-parasites (i.e., ticks and hel- minths) and micro-parasites (i.e., Borrelia spp.), however, there has not been a study that investigates the interaction of all three parasites (i.e., I. pacificus, Borrelia spp., and helminths) and how these co-infections impact prevalence of micro-parasites. We live-trapped rodents in ten sites in northern California to collect feces, blood, ear tissue, and attached ticks. These samples were used to test for infection status of Borrelia species (i.e., micro- parasite), and describe the burden of ticks and helminths (i.e., macro-parasites). We found that some rodent hosts were co-infected with all three parasites, however, the burden or presence of concurrent macro-parasites were not associated with Borrelia infections. For macro-parasites, we found that tick burdens were positively associ- ated with rodent Shannon diversity while negatively associated with predator diversity, whereas helminth burdens were not significantly associated with any host community metric. Ticks and tick-borne pathogens are associated with rodent host diversity, predator diversity, and abiotic factors. However, it is still unknown what factors helminths are associated with on the community level. Understanding the mechanisms that influence co- infections of multiple types of parasites within and across hosts is an increasingly critical component of characterizing zoonotic disease transmission and maintenance. 
    more » « less
  3. Abstract Our understanding of ecological processes is built on patterns inferred from data. Applying modern analytical tools such as machine learning to increasingly high dimensional data offers the potential to expand our perspectives on these processes, shedding new light on complex ecological phenomena such as pathogen transmission in wild populations. Here, we propose a novel approach that combines data mining with theoretical models of disease dynamics. Using rodents as an example, we incorporate statistical differences in the life history features of zoonotic reservoir hosts into pathogen transmission models, enabling us to bound the range of dynamical phenomena associated with hosts, based on their traits. We then test for associations between equilibrium prevalence, a key epidemiological metric and data on human outbreaks of rodent‐borne zoonoses, identifying matches between empirical evidence and theoretical predictions of transmission dynamics. We show how this framework can be generalized to other systems through a rubric of disease models and parameters that can be derived from empirical data. By linking life history components directly to their effects on disease dynamics, our mining‐modelling approach integrates machine learning and theoretical models to explore mechanisms in the macroecology of pathogen transmission and their consequences for spillover infection to humans. 
    more » « less
  4. Orthohantaviruses are globally emerging zoonotic pathogens. While the reservoir host role of several rodent species is well-established, detailed research on the mechanisms of host-othohantavirus interactions has been constrained by the lack of an experimental system that is able to effectively replicate natural infections in controlled settings. Here we report the isolation, and genetic and phenotypic characterization of a novel Puumala orthohantavirus (PUUV) in cells derived from its reservoir host, the bank vole. The isolation process resulted in cell culture infection that evaded antiviral responses, persisted cell passaging, and had minor viral genome alterations. Critically, experimental infections of bank voles with the new isolate resembled natural infections in terms of viral load and host cell distribution. When compared to an attenuated Vero E6 cell-adapted PUUV Kazan strain, the novel isolate demonstrated delayed virus-specific humoral responses. A lack of virus-specific antibodies was also observed during experimental infections with wild-type PUUV, suggesting that delayed seroconversion could be a general phenomenon during orthohantavirus infection in reservoir hosts. Our results demonstrate that orthohantavirus isolation on cells derived from a vole reservoir host retains wild-type infection properties and should be considered the method of choice for experimental infection models to replicate natural processes. 
    more » « less
  5. Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research. 
    more » « less