Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT To explain patterns between anthropogenic loss of species diversity and the rise in the number of novel zoonotic diseases, the “dilution effect” hypothesis predicts that with lower species diversity, infection risk will increase. The underlying mechanisms have been largely investigated in systems where pathogen transmission is vector‐borne or environmental. Relatively less research has been conducted in systems where transmission is direct, such as with orthohantaviruses (hereafter hantaviruses) and their rodent reservoir hosts. These systems are commonly cited as supporting a negative diversity‐disease pattern. To motivate empirical research on underlying mechanisms driving this pattern, we extend a mechanistic framework that links species diversity and infection prevalence of directly transmitted zoonotic pathogens by using rodent‐hantavirus systems in the Americas as models. Additionally, we summarize empirical studies, synthesize mechanistic evidence, and identify knowledge gaps. Our findings suggest that host regulation is a key mechanism likely to drive diversity‐disease patterns in rodent‐hantavirus systems of the Americas. Other mechanisms have received less empirical support but also less attention. Although host regulation likely functions via density‐dependent transmission, and can thus change contact rates among hosts, consequences to other mechanisms have been neglected. As observed in rodent‐hantavirus systems in the Americas, we propose that for a negative diversity‐disease pattern to manifest, the primary reservoir host species should be resilient to anthropogenic disturbance but also vulnerable to competition, predation, or both, and the “diversity” measure should be associated with host density.more » « less
-
The North American deermouse (Peromyscus maniculatus) is a reservoir host for many zoonotic pathogens. Deermice have been well studied, but few studies have attempted to understand social interactions within the species despite these interactions being key to understanding disease transmission. We performed an experiment to determine if supplemental food or nesting material affected social interactions of deermice and tested if interactions increased with increasing population density. We constructed three simulated buildings that received one of three treatments: food, nesting material, or control. Mice were tagged with passive integrated transponder (PIT) tags, and their movement in and out of buildings was monitored with PIT tag readers. PIT tag readings were used to create contact networks, assuming a contact if two deermice were in the same building at the same time. We found that buildings with food led to contact networks that were approximately 10 times more connected than buildings with nesting material or control buildings. We also saw a significant effect of population density on the average number of contacts per individual. These results suggest that food supplementation which is common in peridomestic settings, can significantly increase contacts between reservoir hosts, potentially leading to increased transmission of zoonotic viruses within the reservoir host and from reservoir hosts to humans.more » « less
An official website of the United States government
