Plant virus-like particles (VLPs) are biocompatible, non-infectious nanomaterials with promising applications as immunotherapeutics and vaccines. However, slow-release VLP formulations are needed to achieve long-term efficacy without repeated administration. VLP hydrogels allow the encapsulation and sustained delivery of VLPs, but the particles must covalently bind the hydrogel polymers to avoid premature loss. This has been achieved so far by in situ VLP polymerization, which requires high viral concentrations (5–10 mg/mL, 0.5–1 wt%) to form stable hybrid VLP–hydrogel networks and this complicates scalability and clinical translation. Here, we developed a novel swell-and-click method that led to successful VLP scaffold formation regardless of the viral load used. As a result, VLP-functionalized hydrogels were fabricated with viral concentrations as low as 0.1–1 mg/mL (0.01–0.1 % wt%) without compromising the scaffold stability on the process. The hydrogels incorporate VLPs during swelling, followed by copper-free click chemistry reactions that bind the particles covalently to the polymer. The swell-and-click method also resulted in more than a two-fold enhancement in VLP uptake into the hydrogels and it provides a means of combined burst release and prolonged sustained release, desired traits for cancer immunotherapy treatment. The present work introduces a novel methodology for the design of VLP-based hydrogels, which could facilitate the scalability of the fabrication process and move a significant step forward towards clinical translation of long-term VLP vaccination in cancer disease.
more »
« less
This content will become publicly available on July 8, 2026
Copper-Cross-Linked Alginate-Based Hydrogel Nanoparticles for Sustainable Slow-Release Fertilizer Applications
Controlled-release materials are desirable for many delivery applications and have been used to improve the efficiency of fertilizers and pesticides in crop management. Due to their potential to reduce application of toxic chemicals while prolonging exposure to active agents, controlled-release nanomaterials are currently being investigated for increasing agricultural production and preventing overfertilization. Hydrogels are underexplored as controlled-release nanomaterials and can deliver many types of cargo, from metal ions to small molecules. Alginate-based hydrogels are biocompatible and their internal carboxylic acids coordinate agriculturally valuable micronutrients like Cu2+, Zn2+, and Ca2+. Hydrogels comprising ionic and nonionic polymers can coordinate agriculturally valuable micronutrients, and the combination of ionic and nonionic polymers results in hydrogels with tunable release profiles. Alginate, for example, contains carboxylates that ionically cross-link with divalent cations like Cu2+, Zn2+, and Ca2+, while polar moieties on chitin enable nonionic coordination. To our knowledge, soft-material copper-loaded nanoparticles have not yet been applied as controlled-release materials for foliar delivery. In this work, we present the synthesis and micronutrient release characteristics of hydrogel nanoparticles containing Cu2+, which is coordinated by ionic and nonionic polymers. Hydrogel nanoparticles (HNPs) were prepared by liquid–liquid emulsion techniques and cross-linked with Cu2+ to form double-network hydrogels made from alginate and non-cross-linking chitin. Nanoparticles (100–300 nm in diameter) were characterized by cryogenic electron microscopy, nanoparticle tracking analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copper release profiles of HNPs with different polymer compositions were compared. HNPs containing both chitin and alginate released 8–20 times more copper than HNPs with alginate alone, suggesting that the presence of non-cross-linking polymers improves copper release. Thus, HNP delivery characteristics can be tuned by manipulating intraparticle bond dynamics in the hydrogel polymer matrix.
more »
« less
- Award ID(s):
- 2001611
- PAR ID:
- 10615082
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Langmuir
- ISSN:
- 0743-7463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The incorporation of mechanosensitive linkages into polymers has led to materials with dynamic force responsivity. Here we report oxanorbornadiene cross-linked double network hydrogels that release molecules through a force-mediated retro Diels–Alder reaction. The molecular design and tough double network of polyacrylamide and alginate promote significantly higher activation at substantially less force than pure polymer systems. Activation at physiologically relevant forces provides scope for instilling dynamic mechanochemical behavior in soft biological materials.more » « less
-
A polypeptide-based hydrogel system, when prepared from a diblock polymer with a ternary copolypeptide as one block, exhibited thermo-, mechano- and enzyme-responsive properties, which enabled the encapsulation of naproxen (Npx) during the sol–gel transition and its release in the gel state. Statistical terpolymerizations of l -alanine (Ala), glycine (Gly) and l -isoleucine (Ile) NCAs at a 1 : 1 : 1 feed ratio initiated by monomethoxy monoamino-terminated poly(ethylene glycol) afforded a series of methoxy poly(ethylene glycol)- block -poly( l -alanine- co -glycine- co - l -isoleucine) (mPEG- b -P(A-G-I)) block polymers. β-Sheets were the dominant secondary structures within the polypeptide segments, which facilitated a heat-induced sol-to-gel transition, resulting from the supramolecular assembly of β-sheets into nanofibrils. Deconstruction of the three-dimensional networks by mechanical force (sonication) triggered the reverse gel-to-sol transition. Certain enzymes could accelerate the breakdown of the hydrogel, as determined by in vitro gel weight loss profiles. The hydrogels were able to encapsulate and release Npx over 6 days, demonstrating the potential application of these polypeptide hydrogels as an injectable local delivery system for small molecule drugs.more » « less
-
Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application.more » « less
-
Abstract Controlled degradation of hydrogels enables several applications of these materials, including controlled drug and cell release applications and directed growth of neural networks. These applications motivate the need of a simulation framework for modeling controlled degradation in hydrogels. We develop a Dissipative Particle Dynamics (DPD) framework for hydrogel degradation. As a model hydrogel, we prepare a network formed by end-linking tetra-arm polyethylene glycol precursors. We model bond breaking during degradation of this hydrogel as a stochastic process. The fraction of degradable bonds follows first order degradation kinetics. We characterize the rate of mass loss during degradation process.more » « less
An official website of the United States government
