skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A NodeJS application for XENON collaboration member management
The Big Science projects common of multi-institute particle-physics collaborations generates unique needs for member management, including paper authorship tracking, shift assignments, subscription to mailing lists and access to 3rd party applications such as Github and Slack. For smaller collaborations under 200 people, often no facility for centralized member management is available and these needs are usually manually handled by long-term members despite the management becoming untenable as collaborations grow. To automate many of these tasks for the expanding XENON collaboration, we developed the XENONnT User Management Website, a web application that stores and updates data related to the collaboration members through the use of Node.js and MongoDB. We found that web frameworks are so mature and approachable such that a student can develop a good system to meet the unique needs of the collaboration. The application allows for the scheduling of shifts for members to coordinate between institutes. User manipulation of 3rd party applications are implemented using REST API integration. The XENONnT User Management Website is open source and is a show case of quick implementation of utility application using the web framework, which demonstrated the utility of web-based approaches for solving specific problems to aid the logistics of running Big Science collaborations.  more » « less
Award ID(s):
2112801
PAR ID:
10615381
Author(s) / Creator(s):
; ; ;
Editor(s):
De_Vita, R; Espinal, X; Laycock, P; Shadura, O
Publisher / Repository:
EPJ
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
295
ISSN:
2100-014X
Page Range / eLocation ID:
08002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    In this paper we showcase the support in Open Science Grid (OSG) of Midscale collaborations, the region of computing and storage scale where multi-institutional researchers collaborate to execute their science workflows on the grid without having dedicated technical support teams of their own. Collaboration Services enables such collaborations to take advantage of the distributed resources of the Open Science Grid by facilitating access to submission hosts, the deployment of their applications and supporting their data management requirements. Distributed computing software adopted from large scale collaborations, such as CVMFS, Rucio, xCache lower the barrier of intermediate scale research to integrate with existing infrastructure. 
    more » « less
  2. In August 2016, the authors, faculty members at Lafayette College, were awarded a National Science Foundation (NSF) grant (Grant No. CMMI-1632963) based on an unsolicited proposal to the NSF’s CMMI Division. Like many faculty at strictly undergraduate institutions, we routinely provide opportunities for students to work on research projects and fund this research in some situations through external grants. An innovation in this particular grant was the creation of a research collaboration between faculty and students at Lafayette and an NSF-funded Engineering Research Center (ERC). As stated on the NSF website, “The goal of the ERC Program is to integrate engineering research and education with technological innovation to transform national prosperity, health, and security.” To accomplish this goal, collaborations between ERCs and other institutions are inherent in the work of an ERC; however, research collaborations between ERCs and small liberal arts colleges are rare and we know of no other collaboration of this type. In our most recent research project, we have developed and implemented a model that successfully provides our students and ourselves with opportunities to collaborate on an interdisciplinary research project with faculty, researchers, and graduate students at the NSF-funded Center for Bio-mediated and Bio-inspired Geotechnics (CBBG). This paper provides a brief overview of the goals of the research project and describes our motivation for establishing the collaboration, the structure of the collaboration, the anticipated broader impacts associated with the work, and the results from the first 18 months of the partnership. A logic model is included to illustrate the connections between the resources, strategies, outcomes, and long-term impacts associated with the collaboration. The goal of this paper is to describe the collaboration between Lafayette College and the ERC from the point of view of the faculty members at Lafayette, to describe the positive outcomes that have resulted from this collaboration, and to encourage faculty members at other small colleges to consider developing similar collaborations. 
    more » « less
  3. In August 2016, the authors, faculty members at Lafayette College, were awarded a National Science Foundation (NSF) grant (Grant No. CMMI-1632963) based on an unsolicited proposal to the NSF’s CMMI Division. Like many faculty at strictly undergraduate institutions, we routinely provide opportunities for students to work on research projects and fund this research in some situations through external grants. An innovation in this particular grant was the creation of a research collaboration between faculty and students at Lafayette and an NSF-funded Engineering Research Center (ERC). As stated on the NSF website, “The goal of the ERC Program is to integrate engineering research and education with technological innovation to transform national prosperity, health, and security.” To accomplish this goal, collaborations between ERCs and other institutions are inherent in the work of an ERC; however, research collaborations between ERCs and small liberal arts colleges are rare and we know of no other collaboration of this type. In our most recent research project, we have developed and implemented a model that successfully provides our students and ourselves with opportunities to collaborate on an interdisciplinary research project with faculty, researchers, and graduate students at the NSF-funded Center for Bio-mediated and Bio-inspired Geotechnics (CBBG). This paper provides a brief overview of the goals of the research project and describes our motivation for establishing the collaboration, the structure of the collaboration, the anticipated broader impacts associated with the work, and the results from the first 18 months of the partnership. A logic model is included to illustrate the connections between the resources, strategies, outcomes, and long-term impacts associated with the collaboration. The goal of this paper is to describe the collaboration between Lafayette College and the ERC from the point of view of the faculty members at Lafayette, to describe the positive outcomes that have resulted from this collaboration, and to encourage faculty members at other small colleges to consider developing similar collaborations. 
    more » « less
  4. null (Ed.)
    PhysPort is a professional development website for physics faculty to develop their teaching through research-based resources. As part of PhysPort's ongoing research efforts, we conducted interviews with 23 physics faculty from diverse instructional and institutional contexts in the US. From our interviews, we sought common experiences, motivations, and pain points to develop personas--person-like constructs--of physics faculty in the US. Our research focuses on the perspectives of the key users of our site, and thus we take a user-centered perspective rather than a researcher-centered perspective. We developed personas, which are person-like constructs that are developed based on salient characteristics of actual users, that enable designers to create resources to meet actual user needs without designing for the idiosyncrasies of specific users. We present our set of six personas of physics faculty members: a faculty member who is new to improving his teaching; one who takes up his department's practices; one who wants her teaching to feel good; one who is comfortable in her teaching; one who is continuously improving; and one who solves big problems in her department. These personas of physics faculty making changes to their teaching can be used more broadly to improve the design and development of professional development resources and activities for physics faculty. 
    more » « less
  5. Abstract Biological and biomedical research is increasingly conducted in large, interdisciplinary collaborations to address problems with significant societal impact, such as reducing antibiotic resistance, identifying disease sub-types, and identifying genes that control for drought tolerance in plants. Many of these projects are data driven and involve the collection and analysis of biological data at a large-scale. As a result, life-science projects, which are frequently diverse, large and geographically dispersed, have created unique challenges for collaboration and training. We examine the communication and collaboration challenges in multidisciplinary research through an interview study with 20 life-science researchers. Our results show that both the inclusion of multiple disciplines and differences in work culture influence collaboration in life science. Using these results, we discuss opportunities and implications for designing solutions to better support collaborative tasks and workflows of life scientists. In particular, we show that life science research is increasingly conducted in large, multi-institutional collaborations, and these large groups rely on “mutual respect” and collaboration. However, we found that the interdisciplinary nature of these projects cause technical language barriers and differences in methodology affect trust. We use these findings to guide our recommendations for technology to support life science. We also present recommendations for life science research training programs and note the necessity for incorporating training in project management, multiple language, and discipline culture. 
    more » « less