skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Epigenetic Consequences of In Utero PFAS Exposure: Implications for Development and Long-Term Health
In utero exposure to per- and polyfluoroalkyl substances (PFAS) presents significant health concerns, primarily through their role in inducing epigenetic modifications that have lasting consequences. This review aims to elucidate the impact of prenatal PFAS exposure on epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA regulation, focusing on developmental and long-term health outcomes. The review synthesizes findings from various studies that link PFAS exposure to alterations in DNA methylation in fetal tissues, such as changes in the methylation of genes like IGF2 and MEST, which are linked to disruptions in growth, neurodevelopment, immune function, and metabolic regulation, potentially increasing the risk of diseases such as diabetes and obesity. We also highlight the compound-specific effects of different PFAS, such as PFOS and PFOA, each showing unique impacts on epigenetic profiles, suggesting varied health risks. Special attention is given to hormonal disruption, oxidative stress, and changes in histone-modifying enzymes such as histone acetyltransferases (HATs) and deacetylases (HDACs), which are pathways through which PFAS influence fetal development. Additionally, we discuss PFAS-induced epigenetic changes in placental tissues, which can alter fetal nutrient supply and hormone regulation. Despite accumulating evidence, significant knowledge gaps remain, particularly regarding the persistence of these changes across the lifespan and potential sex-specific susceptibilities. We explore how advancements in epigenome-wide association studies could bridge these gaps, providing a robust framework for linking prenatal environmental exposures to lifetime health outcomes. Future research directions and regulatory strategies are also discussed, emphasizing the need for intervention to protect vulnerable populations from these environmental pollutants.  more » « less
Award ID(s):
2200607
PAR ID:
10615434
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
International Journal of Environmental Research and Public Health
Volume:
22
Issue:
6
ISSN:
1660-4601
Page Range / eLocation ID:
917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plants have evolved variable phenotypic plasticity to counteract different pathogens and pests during immobile life. Microbial infection invokes multiple layers of host immune responses, and plant gene expression is swiftly and precisely reprogramed at both the transcriptional level and post-transcriptional level. Recently, the importance of epigenetic regulation in response to biotic stresses has been recognized. Changes in DNA methylation, histone modification, and chromatin structures have been observed after microbial infection. In addition, epigenetic modifications may be preserved as transgenerational memories to allow the progeny to better adapt to similar environments. Epigenetic regulation involves various regulatory components, including non-coding small RNAs, DNA methylation, histone modification, and chromatin remodelers. The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature. Fully unraveling epigenetic regulatory mechanisms could aid in the development of more efficient and eco-friendly strategies for crop protection in agricultural systems. In this review, we discuss the recent advances on the roles of epigenetic regulation in plant biotic stress responses. 
    more » « less
  2. Maternal trauma influences infant and adult health outcomes and may impact future generations through epigenetic modifications such as DNA methylation (DNAm). Research in humans on the intergenerational epigenetic transmission of trauma effects is limited. In this study, we assessed DNAm signatures of war-related violence by comparing germline, prenatal, and direct exposures to violence across three generations of Syrian refugees. We compared families in which a pregnant grandmother versus a pregnant mother was exposed to violence and included a control group with no exposure to war. We collected buccal swab samples and survey data from mothers and 1-2 children in each of 48 families (n = 131 participants). Based on an epigenome-wide association study (EWAS), we identified differentially methylated regions (DMPs): 14 were associated with germline and 21 with direct exposure to violence. Most DMPs showed the same directionality in DNAm change across germline, prenatal, and direct exposures, suggesting a common epigenetic response to violence. Additionally, we identified epigenetic age acceleration in association with prenatal exposure to violence in children, highlighting the critical period of in utero development. This is the first report of an intergenerational epigenetic signature of violence, which has important implications for understanding the inheritance of trauma. 
    more » « less
  3. Maternal stress has been linked to low birth weight in newborns. One potential pathway involves epigenetic changes at candidate genes that may mediate the effects of prenatal maternal stress on birth weight. This relationship has been documented in stress-related genes, such as NR3C1 . There is less literature exploring the effect of stress on growth-related genes. IGF1 and IGF2 have been implicated in fetal growth and development, though via different mechanisms as IGF2 is under imprinting control. In this study, we tested for associations between prenatal stress, methylation of IGF1 and IGF2 , and birth weight. A total of 24 mother–newborn dyads in the Democratic Republic of Congo were enrolled. Ethnographic interviews were conducted with mothers at delivery to gather culturally relevant war-related and chronic stressors. DNA methylation data were generated from maternal venous, cord blood and placental tissue samples. Multivariate regressions were used to test for associations between stress measures, DNA methylation and birth weight in each of the three tissue types. We found an association between IGF2 methylation in maternal blood and birth weight. Previous literature on the relationship between IGF2 methylation and birth weight has focused on methylation at known differentially methylated regions in cord blood or placental samples. Our findings indicate there may be links between the maternal epigenome and low birth weight that rely on mechanisms outside known imprinting pathways. It thus may be important to consider the effect of maternal exposures and epigenetic profiles on birth weight even in the setting of maternally imprinted genes such as IGF2 . 
    more » « less
  4. Abstract Exposure to environmental toxicants during preconception has been shown to affect offspring health and epigenetic mechanisms such as DNA methylation are hypothesized to be involved in adverse outcomes. However, studies addressing the effects of exposure to environmental toxicants during preconception on epigenetic changes in gametes are limited. The objective of this study is to determine the effect of preconceptional exposure to a dioxin-like polychlorinated biphenyl (3,3′,4,4′,5-pentachlorobiphenyl [PCB126]) on DNA methylation and gene expression in testis. Adult zebrafish were exposed to 3 and 10 nM PCB126 for 24 h and testis tissue was sampled at 7 days postexposure for histology, DNA methylation, and gene expression profiling. Reduced representation bisulfite sequencing revealed 37 and 92 differentially methylated regions (DMRs) in response to 3 and 10 nM PCB126 exposures, respectively. Among them, 19 DMRs were found to be common between both PCB126 treatment groups. Gene ontology (GO) analysis of DMRs revealed that enrichment of terms such as RNA processing, iron-sulfur cluster assembly, and gluconeogenesis. Gene expression profiling showed differential expression of 40 and 1621 genes in response to 3 and 10 nM PCB126 exposures, respectively. GO analysis of differentially expressed genes revealed enrichment of terms related to xenobiotic metabolism, oxidative stress, and immune function. There is no overlap in the GO terms or individual genes between DNA methylation and RNA sequencing results, but functionally many of the altered pathways have been shown to cause spermatogenic defects. 
    more » « less
  5. null (Ed.)
    X chromosome inactivation (XCI) mediated by differential DNA methylation between sexes is an iconic example of epigenetic regulation. Although XCI is shared between eutherians and marsupials, the role of DNA methylation in marsupial XCI remains contested. Here, we examine genome-wide signatures of DNA methylation across fives tissues from a male and female koala ( Phascolarctos cinereus ), and present the first whole-genome, multi-tissue marsupial ‘methylome atlas’. Using these novel data, we elucidate divergent versus common features of representative marsupial and eutherian DNA methylation. First, tissue-specific differential DNA methylation in koalas primarily occurs in gene bodies. Second, females show significant global reduction (hypomethylation) of X chromosome DNA methylation compared to males. We show that this pattern is also observed in eutherians. Third, on average, promoter DNA methylation shows little difference between male and female koala X chromosomes, a pattern distinct from that of eutherians. Fourth, the sex-specific DNA methylation landscape upstream of Rsx , the primary lnc RNA associated with marsupial XCI, is consistent with the epigenetic regulation of female-specific (and presumably inactive X chromosome-specific) expression. Finally, we use the prominent female X chromosome hypomethylation and classify 98 previously unplaced scaffolds as X-linked, contributing an additional 14.6 Mb (21.5%) to genomic data annotated as the koala X chromosome. Our work demonstrates evolutionarily divergent pathways leading to functionally conserved patterns of XCI in two deep branches of mammals. 
    more » « less