skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relative State Counting for Semiclassical Black Holes
It has been shown that entropy differences between certain states of perturbative quantum gravity can be computed without specifying an ultraviolet completion. This is analogous to the situation in classical statistical mechanics, where entropy differences are defined but absolute entropy is not. Unlike in classical statistical mechanics, however, the entropy differences computed in perturbative quantum gravity do not have a clear physical interpretation. Here we construct a family of perturbative black hole states for which the entropy difference can be interpreted as a relative counting of states. Conceptually, this Letter begins with the algebra of mass fluctuations around a fixed black hole background, and points out that while this is a type I algebra, it is not a factor and therefore has no canonical definition of entropy. As in previous work, coupling the mass fluctuations to quantum matter embeds the mass algebra within a type II factor, in which entropy differences (but not absolute entropies) are well defined. It is then shown that for microcanonical wave functions of mass fluctuation, the type II entropy difference equals the logarithm of the dimension of the extra Hilbert space that is needed to map one microcanonical window to another using gauge-invariant unitaries. The Letter closes with comments on type II entropy difference in a more general class of states, where the von Neumann entropy difference does not have a physical interpretation, but “one-shot” entropy differences do. Published by the American Physical Society2024  more » « less
Award ID(s):
2207584
PAR ID:
10615464
Author(s) / Creator(s):
;
Publisher / Repository:
INSPIRE
Date Published:
Journal Name:
Physical Review Letters
Volume:
133
Issue:
20
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study neutrino flavor evolution in the quantum many-body approach using the full neutrino-neutrino Hamiltonian, including the usually neglected terms that mediate nonforward scattering processes. Working in the occupation number representation with plane waves as single-particle states, we explore the time evolution of simple initial states with up to N = 10 neutrinos. We discuss the time evolution of the Loschmidt echo, one body flavor and kinetic observables, and the one-body entanglement entropy. For the small systems considered, we observe “thermalization” of both flavor and momentum degrees of freedom on comparable time scales, with results converging towards expectation values computed within a microcanonical ensemble. We also observe that the inclusion of nonforward processes generates a faster flavor evolution compared to the one induced by the truncated (forward) Hamiltonian. Published by the American Physical Society2024 
    more » « less
  2. The gravity from the quantum entanglement of space-time (GQuEST) experiment uses tabletop-scale Michelson laser interferometers to probe for fluctuations in space-time. We present a practicable interferometer design featuring a novel photon-counting readout method that provides unprecedented sensitivity, as it is not subject to the interferometric standard quantum limit. We evaluate the potential of this design to measure space-time fluctuations motivated by recent “geontropic” quantum gravity models. The accelerated accrual of Fisher information offered by the photon-counting readout enables GQuEST to detect the predicted quantum gravity phenomena within measurement times at least 100 times shorter than equivalent conventional interferometers. The GQuEST design, thus, enables a fast and sensitive search for signatures of quantum gravity in a laboratory-scale experiment. Published by the American Physical Society2025 
    more » « less
  3. We propose a new formula for the entropy of a dynamical black hole—valid to leading order for perturbations off of a stationary black hole background—in an arbitrary classical diffeomorphism covariant Lagrangian theory of gravity in n dimensions. In stationary eras, this formula agrees with the usual Noether charge formula, but in nonstationary eras, we obtain a nontrivial correction term. In particular, in general relativity, our formula for the entropy of a dynamical black hole differs from the standard Bekenstein-Hawking formula A / 4 by a term involving the integral of the expansion of the null generators of the horizon. We show that, to leading perturbative order, our dynamical entropy in general relativity is equal to 1 / 4 of the area of the apparent horizon. Our formula for entropy in a general theory of gravity is obtained from the requirement that a “local physical process version” of the first law of black hole thermodynamics hold for perturbations of a stationary black hole. It follows immediately that for first order perturbations sourced by external matter that satisfies the null energy condition, our entropy obeys the second law of black hole thermodynamics. For vacuum perturbations, the leading-order change in entropy occurs at second order in perturbation theory, and the second law is obeyed at leading order if and only if the modified canonical energy flux is positive (as is the case in general relativity but presumably would not hold in more general theories of gravity). Our formula for the entropy of a dynamical black hole differs from a formula proposed independently by Dong and by Wall. We obtain the general relationship between their formula and ours. We then consider the generalized second law in semiclassical gravity for first order perturbations of a stationary black hole. We show that the validity of the quantum null energy condition (QNEC) on a Killing horizon is equivalent to the generalized second law using our notion of black hole entropy but using a modified notion of von Neumann entropy for matter. On the other hand, the generalized second law for the Dong-Wall entropy is equivalent to an integrated version of QNEC, using the unmodified von Neumann entropy for the entropy of matter. Published by the American Physical Society2024 
    more » « less
  4. A<sc>bstract</sc> We construct a Type IIvon Neumann algebra that describes the largeNphysics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1/Ncorrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in theG →0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign. 
    more » « less
  5. The structure of hadronic form factors at high energies and their deviations from perturbative quantum chromodynamics provide insight on nonperturbative dynamics. Using an approach that is consistent with dispersion relations, we construct a model that simultaneously accounts for the pion wave function, gluonic exchanges, and quark Reggeization. In particular, we find that quark Reggeization can be investigated at high energies by studying scaling violation of the form factor. Published by the American Physical Society2025 
    more » « less