Effective teamwork is crucial in high-stakes domains, yet it is highly challenging to achieve. Team members often must make decisions with limited information and under constraints on communication and time. Recognizing both the value of human coaches as well as the challenges of integrating them into practical settings, we envision AI-based coaching agents to enhance team coordination and performance. This extended abstract introduces AI Coaches and Coordinators, highlights key research questions from both human and AI perspectives that must be addressed to realize them, and summarizes our recent work in developing algorithms and systems to bring AI Coaches and Coordinators to fruition. 
                        more » 
                        « less   
                    This content will become publicly available on June 5, 2026
                            
                            Socratic: Enhancing Human Teamwork via AI-enabled Coaching
                        
                    
    
            Coaches are vital for effective collaboration, but cost and resource constraints often limit their availability during real-world tasks. This limitation poses serious challenges in life-critical domains that rely on effective teamwork, such as healthcare and disaster response. To address this gap, we propose and realize an innovative application of AI: task-time team coaching. Specifically, we introduce Socratic, a novel AI system that complements human coaches by providing real-time guidance during task execution. Socratic monitors team behavior, detects misalignments in team members' shared understanding, and delivers automated interventions to improve team performance. We validated Socratic through two human subject experiments involving dyadic collaboration. The results demonstrate that the system significantly enhances team performance with minimal interventions. Participants also perceived Socratic as helpful and trustworthy, supporting its potential for adoption. Our findings also suggest promising directions both for AI research and its practical applications to enhance human teamwork. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2205454
- PAR ID:
- 10615487
- Publisher / Repository:
- Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
- Date Published:
- ISBN:
- 9798400714269
- Page Range / eLocation ID:
- 1876–1885
- Subject(s) / Keyword(s):
- Decision Support Imitation Learning Mental Models Teamwork
- Format(s):
- Medium: X
- Location:
- Detroit, MI, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Effective teamwork translates to fewer preventable errors and higher task performance in collaborative tasks. However, in time-critical tasks, successful teamwork becomes highly challenging to attain. In such settings, often, team members have partial observability of their surroundings, incur high cost of communication, and have trouble estimating the state and intent of their teammates. To assist a team in improving teamwork at task time, my doctoral research proposes an automated task-time team intervention system. Grounded in the notion of shared mental models, the system first detects whether the team is on the same page or not. It then generates effective interventions to improve teamwork. Additionally, by leveraging past demonstrations to learn a model of team behavior, this system minimizes the need for domain experts to specify teamwork models and rules.more » « less
- 
            Effective human-human and human-autonomy teamwork is critical but often challenging to perfect. The challenge is particularly relevant in time-critical domains, such as healthcare and disaster response, where the time pressures can make coordination increasingly difficult to achieve and the consequences of imperfect coordination can be severe. To improve teamwork in these and other domains, we present TIC: an automated intervention approach for improving coordination between team members. Using BTIL, a multi-agent imitation learning algorithm, our approach first learns a generative model of team behavior from past task execution data. Next, it utilizes the learned generative model and team's task objective (shared reward) to algorithmically generate execution-time interventions. We evaluate our approach in synthetic multi-agent teaming scenarios, where team members make decentralized decisions without full observability of the environment. The experiments demonstrate that the automated interventions can successfully improve team performance and shed light on the design of autonomous agents for improving teamwork.more » « less
- 
            Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems.more » « less
- 
            Effective human-AI collaboration requires agents to adopt their roles and levels of support based on human needs, task requirements, and complexity. Traditional human-AI teaming often relies on a pre-determined robot communication scheme, restricting teamwork adaptability in complex tasks. Leveraging the strong communication capabilities of Large Language Models (LLMs), we propose a Human-Robot Teaming Framework with Multi-Modal Language feedback (HRT-ML), a framework designed to enhance human-robot interaction by adjusting the frequency and content of language-based feedback. The HRT-ML framework includes two core modules: a Coordinator for high-level, low-frequency strategic guidance and a Manager for task-specific, high-frequency instructions, enabling passive and active interactions with human teammates. To assess the impact of language feedback in collaborative scenarios, we conducted experiments in an enhanced Overcooked-AI game environment with varying levels of task complexity (easy, medium, hard) and feedback frequency (inactive, passive, active, superactive). Our results show that as task complexity increases relative to human capabilities, human teammates exhibited stronger preferences toward robotic agents that can offer frequent, proactive support. However, when task complexities exceed the LLM's capacity, noisy and inaccurate feedback from superactive agents can instead hinder team performance, as it requires human teammates to increase their effort to interpret and respond to the large amount of communications, with limited performance return. Our results offer a general principle for robotic agents to dynamically adjust their levels and frequencies of communication to work seamlessly with humans and achieve improved teaming performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
