The introduction of machine learning (ML) components in software projects has created the need for software engineers to collaborate with data scientists and other specialists. While collaboration can always be challenging, ML introduces additional challenges with its exploratory model development process, additional skills and knowledge needed, difficulties testing ML systems, need for continuous evolution and monitoring, and non-traditional quality requirements such as fairness and explainability. Through interviews with 45 practitioners from 28 organizations, we identified key collaboration challenges that teams face when building and deploying ML systems into production. We report on common collaboration points in the development of production ML systems for requirements, data, and integration, as well as corresponding team patterns and challenges. We find that most of these challenges center around communication, documentation, engineering, and process, and collect recommendations to address these challenges.
more »
« less
Team Learning as a Lens for Designing Human-AI Co-Creative Systems
Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems.
more »
« less
- Award ID(s):
- 2118924
- PAR ID:
- 10343320
- Date Published:
- Journal Name:
- ACM CHI 2022 Workshop on Generative AI and HCI
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Robots are increasingly being introduced into domains where they assist or collaborate with human counterparts. There is a growing body of literature on how robots might serve as collaborators in creative activities, but little is known about the factors that shape human perceptions of robots as creative collaborators. This paper investigates the effects of a robot’s social behaviors on people’s creative thinking and their perceptions of the robot. We developed an interactive system to facilitate collaboration between a human and a robot in a creative activity. We conducted a user study (n = 12), in which the robot and adult participants took turns to create compositions using tangram pieces projected on a shared workspace. We observed four human behavioral traits related to creativity in the interaction: accepting robot inputs as inspiration, delegating the creative lead to the robot, communicating creative intents, and being playful in the creation. Our findings suggest designs for co-creation in social robots that consider the adversarial effect of giving the robot too much control in creation, as well as the role playfulness plays in the creative process.more » « less
-
AbstractRecent advances in generative artificial intelligence (AI) and multimodal learning analytics (MMLA) have allowed for new and creative ways of leveraging AI to support K12 students' collaborative learning in STEM+C domains. To date, there is little evidence of AI methods supporting students' collaboration in complex, open‐ended environments. AI systems are known to underperform humans in (1) interpreting students' emotions in learning contexts, (2) grasping the nuances of social interactions and (3) understanding domain‐specific information that was not well‐represented in the training data. As such, combined human and AI (ie, hybrid) approaches are needed to overcome the current limitations of AI systems. In this paper, we take a first step towards investigating how a human‐AI collaboration between teachers and researchers using an AI‐generated multimodal timeline can guide and support teachers' feedback while addressing students' STEM+C difficulties as they work collaboratively to build computational models and solve problems. In doing so, we present a framework characterizing the human component of our human‐AI partnership as a collaboration between teachers and researchers. To evaluate our approach, we present our timeline to a high school teacher and discuss the key insights gleaned from our discussions. Our case study analysis reveals the effectiveness of an iterative approach to using human‐AI collaboration to address students' STEM+C challenges: the teacher can use the AI‐generated timeline to guide formative feedback for students, and the researchers can leverage the teacher's feedback to help improve the multimodal timeline. Additionally, we characterize our findings with respect to two events of interest to the teacher: (1) when the students cross adifficulty threshold,and (2) thepoint of intervention, that is, when the teacher (or system) should intervene to provide effective feedback. It is important to note that the teacher explained that there should be a lag between (1) and (2) to give students a chance to resolve their own difficulties. Typically, such a lag is not implemented in computer‐based learning environments that provide feedback. Practitioner notesWhat is already known about this topicCollaborative, open‐ended learning environments enhance students' STEM+C conceptual understanding and practice, but they introduce additional complexities when students learn concepts spanning multiple domains.Recent advances in generative AI and MMLA allow for integrating multiple datastreams to derive holistic views of students' states, which can support more informed feedback mechanisms to address students' difficulties in complex STEM+C environments.Hybrid human‐AI approaches can help address collaborating students' STEM+C difficulties by combining the domain knowledge, emotional intelligence and social awareness of human experts with the general knowledge and efficiency of AI.What this paper addsWe extend a previous human‐AI collaboration framework using a hybrid intelligence approach to characterize the human component of the partnership as a researcher‐teacher partnership and present our approach as a teacher‐researcher‐AI collaboration.We adapt an AI‐generated multimodal timeline to actualize our human‐AI collaboration by pairing the timeline with videos of students encountering difficulties, engaging in active discussions with a high school teacher while watching the videos to discern the timeline's utility in the classroom.From our discussions with the teacher, we define two types ofinflection pointsto address students' STEM+C difficulties—thedifficulty thresholdand theintervention point—and discuss how thefeedback latency intervalseparating them can inform educator interventions.We discuss two ways in which our teacher‐researcher‐AI collaboration can help teachers support students encountering STEM+C difficulties: (1) teachers using the multimodal timeline to guide feedback for students, and (2) researchers using teachers' input to iteratively refine the multimodal timeline.Implications for practice and/or policyOur case study suggests that timeline gaps (ie, disengaged behaviour identified by off‐screen students, pauses in discourse and lulls in environment actions) are particularly important for identifying inflection points and formulating formative feedback.Human‐AI collaboration exists on a dynamic spectrum and requires varying degrees of human control and AI automation depending on the context of the learning task and students' work in the environment.Our analysis of this human‐AI collaboration using a multimodal timeline can be extended in the future to support students and teachers in additional ways, for example, designing pedagogical agents that interact directly with students, developing intervention and reflection tools for teachers, helping teachers craft daily lesson plans and aiding teachers and administrators in designing curricula.more » « less
-
Hoadley, C; Wang, C (Ed.)While there is widespread interest in supporting young people to critically evaluate machine learning-powered systems, there is little research on how we can support them in inquiring about how these systems work and what their limitations and implications may be. Outside of K-12 education, an effective strategy in evaluating black-boxed systems is algorithm auditing—a method for understanding algorithmic systems’ opaque inner workings and external impacts from the outside in. In this paper, we review how expert researchers conduct algorithm audits and how end users engage in auditing practices to propose five steps that, when incorporated into learning activities, can support young people in auditing algorithms. We present a case study of a team of teenagers engaging with each step during an out-of-school workshop in which they audited peer-designed generative AI TikTok filters. We discuss the kind of scaffolds we provided to support youth in algorithm auditing and directions and challenges for integrating algorithm auditing into classroom activities. This paper contributes: (a) a conceptualization of five steps to scaffold algorithm auditing learning activities, and (b) examples of how youth engaged with each step during our pilot study.more » « less
-
Abstract Generative design tools empowered by recent advancements in artificial intelligence (AI) offer the opportunity for human designers and design tools to collaborate in new, more advanced modes throughout various stages of the product design process to facilitate the creation of higher performing and more complex products. This paper explores how the use of these generative design tools may impact the design process, designer behavior, and overall outcomes. Six in-depth interviews were conducted with practicing and student designers from different disciplines who use commercial generative design tools, detailing the design processes they followed. From a grounded theory-based analysis of the interviews, a provisional process diagram for generative design and its uses in the early-stage design process is proposed. The early stages of defining tool inputs bring about a constraint-driven process in which designers focus on the abstraction of the design problem. Designers will iterate through the inputs to improve both quantitative and qualitative metrics. The learning through iteration allows designers to gain a thorough understanding of the design problem and solution space. This can bring about creative applications of generative design tools in early-stage design to provide guidance for traditionally designed products.more » « less
An official website of the United States government

