skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 4, 2025

Title: Perceptual-Centric Image Super-Resolution using Heterogeneous Processors on Mobile Devices
Image super-resolution (SR) is widely used on mobile devices to enhance user experience. However, neural networks used for SR are computationally expensive, posing challenges for mobile devices with limited computing power. A viable solution is to use heterogeneous processors on mobile devices, especially the specialized hardware AI accelerators, for SR computations, but the reduced arithmetic precision on AI accelerators can lead to degraded perceptual quality in upscaled images. To address this limitation, in this paper we present SR For Your Eyes (FYE-SR), a novel image SR technique that enhances the perceptual quality of upscaled images when using heterogeneous processors for SR computations. FYESR strategically splits the SR model and dispatches different layers to heterogeneous processors, to meet the time constraint of SR computations while minimizing the impact of AI accelerators on image quality. Experiment results show that FYE-SR outperforms the best baselines, improving perceptual image quality by up to 2x, or reducing SR computing latency by up to 5.6x with on-par image quality.  more » « less
Award ID(s):
2215042 2205360 2217003
PAR ID:
10615628
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
in Proceedings of the 30th ACM International Conference on Mobile Computing and Networking (MobiCom), 2024.
Date Published:
ISBN:
9798400704895
Page Range / eLocation ID:
1361 to 1376
Subject(s) / Keyword(s):
Image super-resolution, perceptual quality, neural networks, heterogeneous computing, mobile devices
Format(s):
Medium: X
Location:
Washington D.C. DC USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The processing demands of current and emerging applications, such as image/video processing, are increasing due to the deluge of data, generated by mobile and edge devices. This raises challenges for a vast range of computing systems, starting from smart-phones and reaching cloud and data centers. Heterogeneous computing demonstrates its ability as an efficient computing model due to its capability to adapt to various workload requirements. Field programmable gate arrays (FPGAs) provide power and performance benefits and have been used in many application domains from embedded systems to the cloud. In this paper, we used a closely coupled CPU-FPGA heterogeneous system to accelerate a sliding window based image processing algorithm, Canny edge detector. We accelerated Canny using two different implementations: Code partitioned and data partitioned. In the data partitioned implementation, we proposed a weighted round-robin based algorithm that partitions input images and distributes the load between the CPU and the FPGA based on latency. The paper also compares the performance of the proposed accelerators with separate CPU and FPGA implementations. Using our hybrid CPU-FPGA based algorithm, we achieved a speedup of up to 4.8× over a CPU-only and up to 2.1× over a FPGA-only implementations. Moreover, the estimated total energy consumption of our algorithm is more efficient than a CPU-only implementation. Our results show a significant reduction in energy-delay product (EDP) compared to the CPU-only implementation, and comparable EDP results to the FPGA-only implementation. 
    more » « less
  2. Smart phones have revolutionized the availability of computing to the consumer. Recently, smart phones have been aggressively integrating artificial intelligence (AI) capabilities into their devices. The custom designed processors for the latest phones integrate incredibly capable and energy efficient graphics processors (GPUs) and tensor processors (TPUs) to accommodate this emerging AI workload and on-device inference. Unfor- tunately, smart phones are far from sustainable and have a substantial carbon footprint that continues to be dominated by environmental impacts from their manufacture and far less so by the energy required to power their operation. In this paper we explore the possibility of reversing the trend to increase the dedicated silicon dedicated to emerging application workloads in the phone. Instead we consider how in-memory processing using the DRAM already present in the phone could be used in place of dedicated GPU/TPU devices for AI inference. We explore the potential savings in embodied carbon that could be possible with this tradeoff and provide some analysis of the potential of in- memory computing to compete with these accelerators. While it may not be possible to achieve the same throughput, we suggest that the responsiveness to the user may be sufficient using in- memory computing, while both the embodied and operational carbon footprints could be improved. Our approach can save circa 10–15kgCO2e. 
    more » « less
  3. null (Ed.)
    With the growing performance and wide application of deep neural networks (DNNs), recent years have seen enormous efforts on DNN accelerator hardware design for platforms from mobile devices to data centers. The systolic array has been a popular architectural choice for many proposed DNN accelerators with hundreds to thousands of processing elements (PEs) for parallel computing. Systolic array-based DNN accelerators for datacenter applications have high power consumption and nonuniform workload distribution, which makes power delivery network (PDN) design challenging. Server-class multicore processors have benefited from distributed on-chip voltage regulation and heterogeneous voltage regulation (HVR) for improving energy efficiency while guaranteeing power delivery integrity. This paper presents the first work on HVR-based PDN architecture and control for systolic array-based DNN accelerators. We propose to employ a PDN architecture comprising heterogeneous on-chip and off-chip voltage regulators and multiple power domains. By analyzing patterns of typical DNN workloads via a modeling framework, we propose a DNN workload-aware dynamic PDN control policy to maximize system energy efficiency while ensuring power integrity. We demonstrate significant energy efficiency improvements brought by the proposed PDN architecture, dynamic control, and power gating, which lead to a more than five-fold reduction of leakage energy and PDN energy overhead for systolic array DNN accelerators. 
    more » « less
  4. Mobile Augmented Reality (AR), which overlays digital information with real-world scenes surrounding a user, provides an enhanced mode of interaction with the ambient world. Contextual AR applications rely on image recognition to identify objects in the view of the mobile device. In practice, due to image distortions and device resource constraints, achieving high performance image recognition for AR is challenging. Recent advances in edge computing offer opportunities for designing collaborative image recognition frameworks for AR. In this demonstration, we present CollabAR, an edge-assisted collaborative image recognition framework. CollabAR allows AR devices that are facing the same scene to collaborate on the recognition task. Demo participants develop an intuition for different image distortions and their impact on image recognition accuracy. We showcase how heterogeneous images taken by different users can be aggregated to improve recognition accuracy and provide a better user experience in AR. 
    more » « less
  5. Artificial intelligence (AI) based wearable applications collect and process a significant amount of streaming sensor data. Transmitting the raw data to cloud processors wastes scarce energy and threatens user privacy. Wearable edge AI devices should ideally balance two competing requirements: (1) maximizing the energy efficiency using targeted hardware accelerators and (2) providing versatility using general-purpose cores to support arbitrary applications. To this end, we present an open-source domain-specific programmable system-on-chip (SoC) that combines a RISC-V core with a meticulously determined set of accelerators targeting wearable applications. We apply the proposed design method to design an FPGA prototype and six real-life use cases to demonstrate the efficacy of the proposed SoC. Thorough experimental evaluations show that the proposed SoC provides up to 9.1x faster execution and up to 8.9x higher energy efficiency than software implementations in FPGA while maintaining programmability. 
    more » « less