Aggregating person-level data across multiple clinical study sites is often constrained by privacy regulations, necessitating the development of decentralized modeling approaches in biomedical research. To address this requirement, a federated nonlinear regression algorithm based on the Choquet integral has been introduced for outcome prediction. This approach avoids reliance on prior statistical assumptions about data distribution and captures feature interactions, reflecting the non-additive nature of biomedical data characteristics. This work represents the first theoretical application of Choquet integral regression to multisite longitudinal trial data within a federated learning framework. The Multiple Imputation Choquet Integral Regression with LASSO (MIChoquet-LASSO) algorithm is specifically designed to reduce overfitting and enable variable selection in federated learning settings. Its performance has been evaluated using synthetic datasets, publicly available biomedical datasets, and proprietary longitudinal randomized controlled trial data. Comparative evaluations were conducted against benchmark methods, including ordinary least squares (OLS) regression and Choquet-OLS regression, under various scenarios such as model misspecification and both linear and nonlinear data structures in non-federated and federated contexts. Mean squared error was used as the primary performance metric. Results indicate that MIChoquet-LASSO outperforms compared models in handling nonlinear longitudinal data with missing values, particularly in scenarios prone to overfitting. In federated settings, Choquet-OLS underperforms, whereas the federated variant of the model, FEDMIChoquet-LASSO, demonstrates consistently better performance. These findings suggest that FEDMIChoquet-LASSO offers a reliable solution for outcome prediction in multisite longitudinal trials, addressing challenges such as missing values, nonlinear relationships, and privacy constraints while maintaining strong performance within the federated learning framework.
more »
« less
This content will become publicly available on March 29, 2026
PROLONG: penalized regression for outcome guided longitudinal omics analysis with network and group constraints
Abstract MotivationThere is a growing interest in longitudinal omics data paired with some longitudinal clinical outcome. Given a large set of continuous omics variables and some continuous clinical outcome, each measured for a few subjects at only a few time points, we seek to identify those variables that co-vary over time with the outcome. To motivate this problem we study a dataset with hundreds of urinary metabolites along with Tuberculosis mycobacterial load as our clinical outcome, with the objective of identifying potential biomarkers for disease progression. For such data clinicians usually apply simple linear mixed effects models which often lack power given the low number of replicates and time points. We propose a penalized regression approach on the first differences of the data that extends the lasso + Laplacian method [Li and Li (Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 2008;24:1175–82.)] to a longitudinal group lasso + Laplacian approach. Our method, PROLONG, leverages the first differences of the data to increase power by pairing the consecutive time points. The Laplacian penalty incorporates the dependence structure of the variables, and the group lasso penalty induces sparsity while grouping together all contemporaneous and lag terms for each omic variable in the model. ResultsWith an automated selection of model hyper-parameters, PROLONG correctly selects target metabolites with high specificity and sensitivity across a wide range of scenarios. PROLONG selects a set of metabolites from the real data that includes interesting targets identified during EDA. Availability and implementationAn R package implementing described methods called “prolong” is available at https://github.com/stevebroll/prolong. Code snapshot available at 10.5281/zenodo.14804245.
more »
« less
- Award ID(s):
- 2239102
- PAR ID:
- 10615716
- Editor(s):
- Martelli, Pier Luigi
- Publisher / Repository:
- Bioinformatics
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 41
- Issue:
- 4
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With advances in high-throughput technology, molecular disease subtyping by high-dimensional omics data has been recognized as an effective approach for identifying subtypes of complex diseases with distinct disease mechanisms and prognoses. Conventional cluster analysis takes omics data as input and generates patient clusters with similar gene expression pattern. The omics data, however, usually contain multifaceted cluster structures that can be defined by different sets of genes. If the gene set associated with irrelevant clinical variables (e.g., sex or age) dominates the clustering process, the resulting clusters may not capture clinically meaningful disease subtypes. This motivates the development of a clustering framework with guidance from a prespecified disease outcome, such as lung function measurement or survival, in this paper. We propose two disease subtyping methods by omics data with outcome guidance using a generative model or a weighted joint likelihood. Both methods connect an outcome association model and a disease subtyping model by a latent variable of cluster labels. Compared to the generative model, weighted joint likelihood contains a data-driven weight parameter to balance the likelihood contributions from outcome association and gene cluster separation, which improves generalizability in independent validation but requires heavier computing. Extensive simulations and two real applications in lung disease and triple-negative breast cancer demonstrate superior disease subtyping performance of the outcome-guided clustering methods in terms of disease subtyping accuracy, gene selection and outcome association. Unlike existing clustering methods, the outcome-guided disease subtyping framework creates a new precision medicine paradigm to directly identify patient subgroups with clinical association.more » « less
-
Birtwistle, Marc R (Ed.)High-dimensional mixed-effects models are an increasingly important form of regression in which the number of covariates rivals or exceeds the number of samples, which are collected in groups or clusters. The penalized likelihood approach to fitting these models relies on a coordinate descent algorithm that lacks guarantees of convergence to a global optimum. Here, we empirically study the behavior of this algorithm on simulated and real examples of three types of data that are common in modern biology: transcriptome, genome-wide association, and microbiome data. Our simulations provide new insights into the algorithm’s behavior in these settings, and, comparing the performance of two popular penalties, we demonstrate that the smoothly clipped absolute deviation (SCAD) penalty consistently outperforms the least absolute shrinkage and selection operator (LASSO) penalty in terms of both variable selection and estimation accuracy across omics data. To empower researchers in biology and other fields to fit models with the SCAD penalty, we implement the algorithm in a Julia package,HighDimMixedModels.jl.more » « less
-
Summary Cancer is a heterogeneous disease. Finite mixture of regression (FMR)—as an important heterogeneity analysis technique when an outcome variable is present—has been extensively employed in cancer research, revealing important differences in the associations between a cancer outcome/phenotype and covariates. Cancer FMR analysis has been based on clinical, demographic, and omics variables. A relatively recent and alternative source of data comes from histopathological images. Histopathological images have been long used for cancer diagnosis and staging. Recently, it has been shown that high-dimensional histopathological image features, which are extracted using automated digital image processing pipelines, are effective for modeling cancer outcomes/phenotypes. Histopathological imaging–environment interaction analysis has been further developed to expand the scope of cancer modeling and histopathological imaging-based analysis. Motivated by the significance of cancer FMR analysis and a still strong demand for more effective methods, in this article, we take the natural next step and conduct cancer FMR analysis based on models that incorporate low-dimensional clinical/demographic/environmental variables, high-dimensional imaging features, as well as their interactions. Complementary to many of the existing studies, we develop a Bayesian approach for accommodating high dimensionality, screening out noises, identifying signals, and respecting the “main effects, interactions” variable selection hierarchy. An effective computational algorithm is developed, and simulation shows advantageous performance of the proposed approach. The analysis of The Cancer Genome Atlas data on lung squamous cell cancer leads to interesting findings different from the alternative approaches.more » « less
-
Abstract MotivationThe human microbiome, which is linked to various diseases by growing evidence, has a profound impact on human health. Since changes in the composition of the microbiome across time are associated with disease and clinical outcomes, microbiome analysis should be performed in a longitudinal study. However, due to limited sample sizes and differing numbers of timepoints for different subjects, a significant amount of data cannot be utilized, directly affecting the quality of analysis results. Deep generative models have been proposed to address this lack of data issue. Specifically, a generative adversarial network (GAN) has been successfully utilized for data augmentation to improve prediction tasks. Recent studies have also shown improved performance of GAN-based models for missing value imputation in a multivariate time series dataset compared with traditional imputation methods. ResultsThis work proposes DeepMicroGen, a bidirectional recurrent neural network-based GAN model, trained on the temporal relationship between the observations, to impute the missing microbiome samples in longitudinal studies. DeepMicroGen outperforms standard baseline imputation methods, showing the lowest mean absolute error for both simulated and real datasets. Finally, the proposed model improved the predicted clinical outcome for allergies, by providing imputation for an incomplete longitudinal dataset used to train the classifier. Availability and implementationDeepMicroGen is publicly available at https://github.com/joungmin-choi/DeepMicroGen.more » « less
An official website of the United States government
