Abstract SummaryPredictive learning from medical data incurs additional challenge due to concerns over privacy and security of personal data. Federated learning, intentionally structured to preserve high level of privacy, is emerging to be an attractive way to generate cross-silo predictions in medical scenarios. However, the impact of severe population-level heterogeneity on federated learners is not well explored. In this article, we propose a methodology to detect presence of population heterogeneity in federated settings and propose a solution to handle such heterogeneity by developing a federated version of Deep Regression Forests. Additionally, we demonstrate that the recently conceptualized REpresentation of Features as Images with NEighborhood Dependencies CNN framework can be combined with the proposed Federated Deep Regression Forests to provide improved performance as compared to existing approaches. Availability and implementationThe Python source code for reproducing the main results are available on GitHub: https://github.com/DanielNolte/FederatedDeepRegressionForests. Contactranadip.pal@ttu.edu Supplementary informationSupplementary data are available at Bioinformatics Advances online.
more »
« less
This content will become publicly available on October 14, 2026
Federated Choquet Regression with LASSO for Outcome Prediction in Multisite Longitudinal Trial Data
Aggregating person-level data across multiple clinical study sites is often constrained by privacy regulations, necessitating the development of decentralized modeling approaches in biomedical research. To address this requirement, a federated nonlinear regression algorithm based on the Choquet integral has been introduced for outcome prediction. This approach avoids reliance on prior statistical assumptions about data distribution and captures feature interactions, reflecting the non-additive nature of biomedical data characteristics. This work represents the first theoretical application of Choquet integral regression to multisite longitudinal trial data within a federated learning framework. The Multiple Imputation Choquet Integral Regression with LASSO (MIChoquet-LASSO) algorithm is specifically designed to reduce overfitting and enable variable selection in federated learning settings. Its performance has been evaluated using synthetic datasets, publicly available biomedical datasets, and proprietary longitudinal randomized controlled trial data. Comparative evaluations were conducted against benchmark methods, including ordinary least squares (OLS) regression and Choquet-OLS regression, under various scenarios such as model misspecification and both linear and nonlinear data structures in non-federated and federated contexts. Mean squared error was used as the primary performance metric. Results indicate that MIChoquet-LASSO outperforms compared models in handling nonlinear longitudinal data with missing values, particularly in scenarios prone to overfitting. In federated settings, Choquet-OLS underperforms, whereas the federated variant of the model, FEDMIChoquet-LASSO, demonstrates consistently better performance. These findings suggest that FEDMIChoquet-LASSO offers a reliable solution for outcome prediction in multisite longitudinal trials, addressing challenges such as missing values, nonlinear relationships, and privacy constraints while maintaining strong performance within the federated learning framework.
more »
« less
- Award ID(s):
- 2140729
- PAR ID:
- 10651725
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computing for Healthcare
- ISSN:
- 2637-8051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning. These popular doubly robust estimators combine outcome modelling with balancing weights—weights that achieve covariate balance directly instead of estimating and inverting the propensity score. When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine those of the original outcome model with those from unpenalized ordinary least-squares (OLS). Under certain choices of regularization parameters, the augmented estimator in fact collapses to the OLS estimator alone. We then extend these results to specific outcome and weighting models. We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression—implying a novel analysis of undersmoothing. When the weighting model is instead lasso-penalized, we demonstrate a familiar ‘double selection’ property. Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights.more » « less
-
Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction.more » « less
-
This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) in biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions. The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data. This approach not only enhances the capabilities of FMs in medical diagnostics and personalized treatment but also addresses critical concerns about data privacy and security in healthcare. This survey reviews the current applications of FMs in federated settings, underscores the challenges, and identifies future research directions including scaling FMs, managing data diversity, and enhancing communication efficiency within FL frameworks. The objective is to encourage further research into the combined potential of FMs and FL, laying the groundwork for healthcare innovations.more » « less
-
Obesity is a common, serious, and costly chronic disease in the United States, a risk factor for several major cancers, linked to higher rates of illness and death. It is thus a critical issue that needs attention from health care professionals and the public alike. We use a novel approach to target nonstandard variations to better understand the variables associated with weight loss. We introduce a new methodology using the Choquet Integral with fuzzy measure, an approach that accounts for interactions between measured features. The Choquet Integral has limited sourced applications to the biomedical field despite widespread use in theoretical mathematics and economics. Our technique applies it to health data to show a robust method to target and optimize weight loss parameters. We identify data versus noise, optimally choose a reduced version of the powerset for computability purposes, and identify the sub-additive cooperative learning bound of the Choquet Integral. We show that the proposed technique targets heretofore unknown variations in predictive weight loss studies with broad potential applications.more » « less
An official website of the United States government
