Abstract Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant–pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well‐understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time‐series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community‐wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long‐term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change.
more »
« less
This content will become publicly available on February 19, 2026
Climate change intensifies plant-pollinator mismatch and increases secondary extinction risk for plants in northern latitudes
Climate change can lead to “secondary extinction risks” for plants owing to the decoupling of life-cycle events of plants and their pollinators (i.e., phenological mismatch). However, forecasting secondary extinction risk under future climate change remains challenging. We developed a new framework to quantify plants’ secondary extinction risk associated with phenological mismatch with bees using ca. 15,000 crowdsourced specimen records of Viola species and their solitary bee pollinators spanning 120 years across the eastern United States. We further examined latitudinal patterns in secondary extinction risk and explored how latitudinal variation in plant-pollinator specialization influence this risk. Secondary extinction risk of Viola spp. increases with latitude, indicating that future climate change likely will pose a greater threat to plant-bee pollinator networks at northern latitudes. Additionally, the sensitivity of secondary extinction risk to phenological mismatch with both generalist and specialist bee pollinators decreases with latitude: specialist bees display a sharper decrease at higher latitudes. Our findings demonstrate that existing conservation priorities identified solely based on primary extinction risk directly caused by climate change may not be sufficient to support self-sustaining populations of plants. Incorporating secondary extinction risk resulting from ecological mismatches between plants and pollinators into future global conservation frameworks should be carefully considered.
more »
« less
- Award ID(s):
- 2105932
- PAR ID:
- 10616570
- Publisher / Repository:
- EcoEvoRxiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Anthropogenic climate change represents one of the most serious threats to ecosystems in the 21st century. As temperatures increase, and precipitation patterns are altered, species need to respond to living in increasingly arid environments. The most noticeable responses to changing climate is for populations to shift spatially, typically upward in elevation and latitude, and phenologically, typically by becoming phenologically active earlier in the year. Variation in how individual organisms or populations respond to climate change can alter their ecological interactions. The timing of flowering is species specific, and when and with whom a plant flowers adjacent to can impact their reproductive success. Between trophic levels, the synchronous phenology of flowering plants and pollinators is critical for both plant and pollinator reproductive success. Plant-plant and plant-pollinator phenological synchrony is at risk of deterioration due to aridification, potentially decreasing ecosystem functioning across the globe. While the bulk of previous research on this issue has been conducted in humid systems, plant- pollinator phenological synchrony has been in understudied in dryland ecosystems, which encompass over 40% of land globally. In the following chapters, I leverage natural history data along spatial and temporal gradients to determine the impacts of climatic variation on plant-plant and plant-pollinator phenological synchrony. I find evidence that plant-plant phenological synchrony is sensitive to changes in community composition. Plant-pollinator phenological synchrony decreases with increasing aridity at the community level, but some species are better suited to future aridification than others. My dissertation highlights the importance of understanding phenological synchrony in dryland ecosystems using analytical techniques specifically suited to the stochastic nature of climate change in these systems.more » « less
-
Abstract PremiseReproductive fitness in plants is often determined by the quantity and quality of pollen transferred by pollinators. However, many fitness studies measure only female fitness or rely on proxies for male fitness. Here we assessed how five bee taxon groups affect male fitness in a prairie plant by quantifying pollen removal, visitation, and siring success using paternity assignments and a unique pollinator visitation experiment. MethodsInEchinacea angustifolia, we measured per‐visit pollen removal for each pollinator taxon and estimated the number of pollen grains needed for successful ovule fertilization. Additionally, we directly measured pollinator influence on siring by allowing only one bee taxon to visit each pollen‐donor plant, while open‐pollinated plants acted as unrestricted pollen recipients. We genotyped the resulting offspring, assigned paternity, and used aster statistical models to quantify siring success. ResultsSiring success of pollen‐donor plants differed among the five pollinator groups. Nongrooming male bees were associated with increased siring success. Bees from all taxa removed most of the flowering head's pollen in one visit. However, coneflower‐specialist beeAndrena helianthiformisremoved the most pollen per visit. Female fitness and proxy measures of male fitness, such as pollinator visitation and pollen removal, did not align with our direct quantifications of male fitness. ConclusionsOur results illustrate the need for more studies to directly quantify male fitness, and we caution against using male fitness proxy measures. In addition, conservation efforts that preserve a diverse pollinator community can benefit plants in fragmented landscapes.more » « less
-
Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses.more » « less
-
Abstract Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens . The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus . Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.more » « less
An official website of the United States government
