Abstract AimWhile the floras of eastern Asia (EA) and eastern North America (ENA) share numerous genera, they have drastically different species richness. Despite an overall similarity in the quality of their temperate climates, the climate of EA is more spatially heterogeneous than that of ENA. Spatial environmental heterogeneity has been found to play a key role in influencing species richness in some regions. Here, we tested the following hypotheses: (a) EA species will occupy larger climatic niches than their ENA congeners, (b) congeners of EA‐ENA disjunct genera will occupy statistically equivalent climatic niches, and (c) congeners of EA‐ENA disjunct genera will occupy more similar climatic niches than expected by their respective physiographic context. LocationNorth America and Asia. Time periodPresent. Major taxa studiedSeed plants. MethodsPredictions generated by ecological niche models (ENMs) were compared for 88 species across 31 EA‐ENA disjunct genera. ENM predictions were assessed for geographic and ecological breadth. Tests for niche equivalency and similarity were performed for congeneric species pairs to determine if species of disjunct genera have experienced niche conservatism or divergence. ResultsEA species tend to occupy greater amounts of climatic niche space than their close relatives in ENA. Over two‐thirds of the conducted niche comparisons show that EA‐ENA congeners either occupy equivalent climatic niche space within these broader climatic regimes or occupy non‐equivalent niches that are as similar as expected given their physiographic contexts. Main conclusionsEA species tend to occupy larger climatic niches, and congeners of EA‐ENA disjunct genera tend to occupy equivalent/similar niche space within their respective distributions, with differences in occupied niches possibly due to their respective physiographic contexts, highlighting how niche‐neutral processes and niche conservatism may affect the distributions of disjunct species.
more »
« less
This content will become publicly available on December 1, 2026
The global determinants of climate niche breadth in birds
Understanding why certain species occupy wider climate niches than others is a fundamental pursuit in ecology with important implications for conservation and management. However, existing synthesis on this topic has focused on the consequences rather than the causes of climate niche expansion, leading to significant gaps in our understanding of the possible evolutionary drivers of this important ecological property. Here we leverage species distribution models powered by millions of citizen science sightings of birds to determine how a comprehensive suite of parameters influences the breadth of climate niches. Our analyses show that migration and more central locations in climate space are directly associated with wider climate niches. Additionally, they indicate that larger brains, smaller bodies, and broader dietary requirements are indirectly associated with narrower niches, presumably because they enable the occupancy of geographically widespread habitats that occupy narrow areas in climate niche space. Through follow-up analyses we further clarify how the different factors considered in this study help shape niche breadth by affecting the colonization of more versus less frequently used habitats. Overall, our findings shed light on critical, yet highly under-appreciated properties of climate niches, underscoring the complexity and interconnectivity of the factors that shaped their evolution among birds.
more »
« less
- Award ID(s):
- 2413199
- PAR ID:
- 10615795
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global loss of biodiversity has placed new urgency on the need to understand factors regulating species response to rapid environmental change. While specialists are often less resilient to rapid environmental change than generalists, species‐level analyses may obscure the extent of specialization when locally adapted populations vary in climate tolerances. Until recently, quantification of the degree of climate specialization in migratory birds below the species level was hindered by a lack of genomic and tracking information, but recent technological advances have helped to overcome these barriers. Here we take a genome‐wide genetic approach to mapping population‐specific migratory routes and quantifying niche breadth within genetically distinct populations of a migratory bird, the willow flycatcher (Empidonax traillii), which exhibits variation in the severity of population declines across its breeding range. While our sample size is restricted to the number of genetically distinct populations within the species, our results support the idea that locally adapted populations of the willow flycatcher with narrow climatic niches across seasons are already federally listed as endangered or in steep decline, while populations with broader climatic niches have remained stable in recent decades. Overall, this work highlights the value of quantifying niche breadth within genetically distinct groups across time and space when attempting to understand the factors that facilitate or constrain the response of locally adapted populations to rapid environmental change.more » « less
-
Quantifying species’ niches across a clade reveals how environmental tolerances evolve, and offers insights into present and future distributions. We use herbarium specimens to explore climate niche evolution across 14 annual species of theStreptanthus(s.l.) clade (Brassicaceae), which originated in deserts and diversified into cooler, moister areas. To understand how climate niches evolved, we used historical climate records to estimate each species’ 1) classic annual climate niche, averaged over specimen collection sites; 2) growing season niche, from estimated specimen germination date to collection date, averaged across specimens (specimen-specific niche); and 3) standardized seasonal niche based on average growing seasons of all species (clade-seasonal niche). In addition to estimating how phenological variation maps onto climate niche evolution, we explored how spatial refugia shape the climate experienced by species by 1) analyzing how field soil texture changes relative to the climate space that species occupy and 2) comparing soil water holding capacity from each specimen locality to that of surrounding areas. Specimen-specific niches exhibited less clade-wide variation in climatic water deficit (CWD) than did annual or clade-seasonal niches, and specimen-specific temperature niches showed no phylogenetic signal, in contrast to annual and clade-seasonal temperature niches. Species occupying cooler regions tracked hotter and drier climates by growing later into the summer, and by inhabiting refugia on drought-prone soils. These results underscore how phenological shifts, spatial refugia, and germination timing shape “lived” climate. Despite occupying a large range of annual climates, we found these species are constrained in the conditions under which they thrive.more » « less
-
Abstract AimEcological niches shape species commonness and rarity, yet, the relative importance of different niche mechanisms within and across ecosystems remains unresolved. We tested the influence of niche breadth (range of environmental conditions where species occur) and niche position (marginality of a species’ environmental distribution relative to the mean environmental conditions of a region) on tree‐species abundance and occupancy across three biogeographic regions. LocationArgentinian Andes; Bolivian Amazon; Missouri Ozarks. Time period2002–2010. Major taxa studiedTrees. MethodsWe calculated abiotic‐niche breadths and abiotic‐niche positions using 16 climate, soil and topographic variables. For each region, we used model selection to test the relative influence of niche breadth and niche position on local abundance and occupancy in regional‐scale networks of 0.1‐ha forest plots. To account for species–environment associations caused by other mechanisms (e.g., dispersal), we used null models that randomized associations between species occurrences and environmental variables. ResultsWe found strong support for the niche‐position hypothesis. In all regions, species with higher local abundance and occupancy occurred in non‐marginal environments. Observed relationships between occupancy and niche position also differed from random species–environment associations in all regions. Surprisingly, we found little support for the niche‐breadth hypothesis. Observed relationships between both local abundance and niche breadth, and occupancy and niche breadth, did not differ from random species–environment associations. Main conclusionNiche position was more important than niche breadth in shaping species commonness and rarity across temperate, sub‐tropical and tropical forests. In all forests, tree species with widespread geographic distributions were associated with environmental conditions commonly found throughout the region, suggesting that niche position has similar effects on species occupancy across contrasting biogeographic regions. Our findings imply that conservation efforts aimed at protecting populations of common and rare tree species should prioritize conservation of both common and rare habitats.more » « less
-
Abstract Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species,Asterias rubensandA. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome‐wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth;Asterias forbesidisplays a relatively narrow environmental niche while conversely,A. rubenshas a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.more » « less
An official website of the United States government
