skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Extracellular, Ca 2+ ‐Activated Nuclease ( EcnA ) Mediates Transformation in a Naturally Competent Archaeon
ABSTRACT Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation inMethanococcus maripaludis, but few homologs of bacterial transformation‐associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here asecnA), to be an extracellular nuclease. We show that EcnA is Ca2+‐activated, present on the cell surface, and essential for transformation. While EcnA can degrade several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation‐associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.  more » « less
Award ID(s):
2148165
PAR ID:
10615854
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Publisher / Repository:
Molecular Microbiology
Date Published:
Journal Name:
Molecular Microbiology
Volume:
122
Issue:
4
ISSN:
0950-382X
Page Range / eLocation ID:
477 to 490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is disproportionately warming northern peatlands, which may release large carbon stores via increased microbial activity. While there are many unknowns about such microbial responses, virus roles are especially poorly characterized with studies to date largely restricted to “bycatch” from bulk metagenomes. Here, we used optimized viral particle purification techniques on 20 samples along a highly contextualized peatland permafrost thaw gradient, extracted and sequenced viral particle DNA using two library kits to capture single-stranded (ssDNA) and double-stranded (dsDNA) virus genomes (40 total viromes), and explored their diversity and potential ecosystem impacts. Both kits recovered similar dsDNA virus numbers, but only one also captured thousands of ssDNA viruses. Combining these data, we explored population-level ecology using genomic representation from 9,560 viral operational taxonomic units (vOTUs); nearly a 4-fold expansion from permafrost-associated soils, and 97% of which were novel when compared against large datasets from soils, oceans, and the human gut.In silicopredictions identified putative hosts for 44% (4,149 dsDNA + 17 ssDNA) of the identified vOTUs spanning 2 eukaryotic, 12 archaeal, and 30 bacterial phyla. The recovered vOTUs encoded 1,684 putative auxiliary metabolic genes (AMGs) and other metabolic genes carried by ∼10% of detected vOTUs, of which 46% were related to carbon processing and 644 were novel. These AMGs grouped into five functional categories and 11 subcategories, and nearly half (47%) of the AMGs were involved in carbon utilization. Of these, 112 vOTUs encoded 123 glycoside hydrolases spanning 15 types involved in the degradation of polysaccharides (e.g., cellulose) to monosaccharides (e.g., galactose), or further monosaccharide degradation, which suggests virus involvement in myriad metabolisms including fermentation and central carbon metabolism. These findings expand the scope of viral roles in microbial carbon processing and suggest viruses may be critical for understanding the fate of soil organic carbon in peatlands. 
    more » « less
  2. Abstract Natural transformation, the process whereby a cell acquires DNA directly from the environment, is an important driver of evolution in microbial populations, yet the mechanism of DNA uptake is only characterized in bacteria. To expand our understanding of natural transformation in archaea, we undertook a genetic approach to identify a catalog of genes necessary for transformation in Methanococcus maripaludis . Using an optimized method to generate random transposon mutants, we screened 6144 mutant strains for defects in natural transformation and identified 25 transformation-associated candidate genes. Among these are genes encoding components of the type IV-like pilus, transcription/translation associated genes, genes encoding putative membrane bound transport proteins, and genes of unknown function. Interestingly, similar genes were identified regardless of whether replicating or integrating plasmids were provided as a substrate for transformation. Using allelic replacement mutagenesis, we confirmed that several genes identified in these screens are essential for transformation. Finally, we identified a homolog of a membrane bound substrate transporter in Methanoculleus thermophilus and verified its importance for transformation using allelic replacement mutagenesis, suggesting a conserved mechanism for DNA transfer in multiple archaea. These data represent an initial characterization of the genes important for transformation which will inform efforts to understand gene flow in natural populations. Additionally, knowledge of the genes necessary for natural transformation may assist in identifying signatures of transformation machinery in archaeal genomes and aid the establishment of new model genetic systems for studying archaea. 
    more » « less
  3. Abstract N6-adenine methylation occurs in both DNA and RNA (referred to as 6mA and m6A, respectively). As an extensively characterized epi-transcriptomic mark found in virtually all eukaryotes, m6A in mRNA is deposited by METTL3-METTL14 complex. As a transcription-associated epigenetic mark abundantly present in many unicellular eukaryotes, 6mA is coordinately maintained by two AMT1 complexes, distinguished by their mutually exclusive subunits, AMT6 and AMT7. These are all members of MT-A70 family methyltransferases (MTases). Despite their functional importance, no structure for holo-complexes with cognate DNA/RNA substrate has been resolved. Here, we employ AlphaFold3 (AF3) and molecular dynamics (MD) simulations for structural modeling ofTetrahymenaAMT1 complexes, with emphasis on ternary holo-complexes with double-stranded DNA (dsDNA) substrate and cofactor. Key structural features observed in these models are validated by mutagenesis and various other biophysical and biochemical approaches. Our analysis reveals the structural basis for DNA substrate recognition, base flipping, and catalysis in the prototypical eukaryotic DNA 6mA-MTase. It also allows us to delineate the reaction pathway for processive DNA methylation involving translocation of the closed form AMT1 complex along dsDNA. As the active site is highly conserved across MT-A70 family of eukaryotic 6mA/m6A-MTases, the structural insight will facilitate rational design of small molecule inhibitors, especially for METTL3-METTL14, a promising target in cancer therapeutics. 
    more » « less
  4. Abstract Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS–STING-mediated signalling and tumour suppression1–3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4–10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11–RAD50–NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1–RIPK3–MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation ofZBP1in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis. 
    more » « less
  5. Abstract Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex‐specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non‐selected control (C) line. Through cross‐fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel‐running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression forBdnf,Pde4dandGrin2b. Decreases inBdnfmethylation correlated with significant increases inBdnfgene expression in the hippocampus of HR compared to C mice. Cross‐fostering also influenced the DNA methylation patterns forPde4din the cortex andGrin2bin the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns forAtrxandOxtrin the cortex andAtrxandBdnfin the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early‐life influences to shape adult exercise behavior. 
    more » « less