skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 3, 2026

Title: Image-Based Roadmaps for Vision-Only Planning and Control of Robotic Manipulators
This work presents a motion planning framework for robotic manipulators that computes collision-free paths directly in image space. The generated paths can then be tracked using vision-based control, eliminating the need for an explicit robot model or proprioceptive sensing. At the core of our approach is the construction of a roadmap entirely in image space. To achieve this, we explicitly define sampling, nearest-neighbor selection, and collision checking based on visual features rather than geometric models. We first collect a set of image space samples by moving the robot within its workspace, capturing keypoints along its body at different configurations. These samples serve as nodes in the roadmap, which we construct using either learned or predefined distance metrics. At runtime, the roadmap generates collision-free paths directly in image space, removing the need for a robot model or joint encoders. We validate our approach through an experimental study in which a robotic arm follows planned paths using an adaptive vision-based control scheme to avoid obstacles. The results show that paths generated with the learned-distance roadmap achieved 100% success in control convergence, whereas the predefined image space distance roadmap enabled faster transient responses but had a lower success rate in convergence.  more » « less
Award ID(s):
2341532
PAR ID:
10615878
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
10
Issue:
8
ISSN:
2377-3774
Page Range / eLocation ID:
8530 to 8537
Subject(s) / Keyword(s):
Motion and path planning collision avoidance integrated planning and control visual servoing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Safe path planning is critical for bipedal robots to operate in safety-critical environments. Common path planning algorithms, such as RRT or RRT*, typically use geometric or kinematic collision check algorithms to ensure collision-free paths toward the target position. However, such approaches may generate non-smooth paths that do not comply with the dynamics constraints of walking robots. It has been shown that the control barrier function (CBF) can be integrated with RRT/RRT* to synthesize dynamically feasible collision-free paths. Yet, existing work has been limited to simple circular or elliptical shape obstacles due to the challenging nature of constructing appropriate barrier functions to represent irregularly shaped obstacles. In this paper, we present a CBF-based RRT* algorithm for bipedal robots to generate a collision-free path through space with multiple polynomial-shaped obstacles. In particular, we used logistic regression to construct polynomial barrier functions from a grid map of the environment to represent irregularly shaped obstacles. Moreover, we developed a multi-step CBF steering controller to ensure the efficiency of free space exploration. The proposed approach was first validated in simulation for a differential drive model, and then experimentally evaluated with a 3D humanoid robot, Digit, in a lab setting with randomly placed obstacles. 
    more » « less
  2. This paper extends the gap-based navigation technique Potential Gap with safety guarantees at the local planning level for a kinematic planar nonholonomic robot model, leading to Safer Gap . It relies on a subset of navigable free space from the robot to a gap, denoted the keyhole region. The region is defined by the union of the largest collision-free disc centered on the robot and a collision-free trapezoidal region directed through the gap. Safer Gap first generates Bézier-based collision-free paths within the keyhole regions. The keyhole region of the top scoring path is encoded by a shallow neural network-based zeroing barrier function (ZBF) synthesized in real-time. Nonlinear Model Predictive Control (NMPC) with Keyhole ZBF constraints and output tracking of the Bézier path, synthesizes a safe kinematically feasible trajectory. The Potential Gap projection operator serves as a last action to enforce safety if the NMPC optimization fails to converge to a solution within the prescribed time. Simulation and experimental validation of Safer Gap confirm its collision-free navigation properties. 
    more » « less
  3. Recent advancements in Digital Twin (DT) technology have opened new avenues for smart manufacturing. These systems increasingly depend on adaptive control mechanisms to optimize complex processes and reduce production wastage. This research presents an innovative approach that integrates Soft Actor-Critic (SAC) Reinforcement Learning (RL) algorithm with DT technology with Robot Operating System 2 (ROS2) to enable real-time adaptive control in robotic manufacturing. Our experimental setup consists of a ViperX 300 S robot arm, in which two distinct Tasks: (1) static target reaching and (2) dynamic target following were implemented for simulating adaptive control of manufacturing process. The innovative system architecture combines Unity game engine’s simulation environment with ROS2 for seamless and robust DT synchronization. We implemented a hierarchical reward structure to address common RL challenges, including local minima avoidance, convergence acceleration, and training stability, while leveraging transfer learning to efficiently adapt trained behavior models across tasks. Experimental results demonstrate rapid policy convergence and robust task execution, with performance metrics including cumulative reward, value loss, policy loss, and entropy validating the effectiveness of the approach. To the best of our knowledge, this is the first study to integrate Unity with ROS2-based DT for real-time synchronization and adaptive physical robot control using RL. Unlike prior works limited to offline or low-frequency simulations, our framework achieves stable 20 ms joint-level synchronization, enabling deployment of learned behaviors directly to physical robotic systems through virtual platform. This work advances the integration of RL with realistic DT framework for industrial and manufacturing robotics applications, providing a framework for enhanced adaptive real-time control in smart additive manufacturing (AM) processes. 
    more » « less
  4. Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable. 
    more » « less
  5. Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable 
    more » « less