skip to main content


This content will become publicly available on December 1, 2025

Title: Safer Gap: Safe Navigation of Planar Nonholonomic Robots With a Gap-Based Local Planner
This paper extends the gap-based navigation technique Potential Gap with safety guarantees at the local planning level for a kinematic planar nonholonomic robot model, leading to Safer Gap . It relies on a subset of navigable free space from the robot to a gap, denoted the keyhole region. The region is defined by the union of the largest collision-free disc centered on the robot and a collision-free trapezoidal region directed through the gap. Safer Gap first generates Bézier-based collision-free paths within the keyhole regions. The keyhole region of the top scoring path is encoded by a shallow neural network-based zeroing barrier function (ZBF) synthesized in real-time. Nonlinear Model Predictive Control (NMPC) with Keyhole ZBF constraints and output tracking of the Bézier path, synthesizes a safe kinematically feasible trajectory. The Potential Gap projection operator serves as a last action to enforce safety if the NMPC optimization fails to converge to a solution within the prescribed time. Simulation and experimental validation of Safer Gap confirm its collision-free navigation properties.  more » « less
Award ID(s):
2235944 2345057 1849333 2340870
PAR ID:
10553378
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
9
Issue:
12
ISSN:
2377-3774
Page Range / eLocation ID:
11034 to 11041
Subject(s) / Keyword(s):
Vision-based navigation collision avoidance reactive and sensor-based planning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Safe quadrupedal navigation through unknown environments is a challenging problem. This paper proposes a hierarchical vision-based planning framework (GPF-BG) integrating our previous Global Path Follower (GPF) navigation system and a gap-based local planner using Bézier curves, so called B ézier Gap (BG). This BG-based trajectory synthesis can generate smooth trajectories and guarantee safety for point-mass robots. With a gap analysis extension based on non-point, rectangular geometry, safety is guaranteed for an idealized quadrupedal motion model and significantly improved for an actual quadrupedal robot model. Stabilized perception space improves performance under oscillatory internal body motions that impact sensing. Simulation-based and real experiments under different benchmarking configurations test safe navigation performance. GPF-BG has the best safety outcomes across all experiments. 
    more » « less
  2. In this paper, we present a decentralized control approach based on a Nonlinear Model Predictive Control (NMPC) method that employs barrier certificates for safe navigation of multiple nonholonomic wheeled mobile robots in unknown environments with static and/or dynamic obstacles. This method incorporates a Learned Barrier Function (LBF) into the NMPC design in order to guarantee safe robot navigation, i.e., prevent robot collisions with other robots and the obstacles. We refer to our proposed control approach as NMPC-LBF. Since each robot does not have a priori knowledge about the obstacles and other robots, we use a Deep Neural Network (DeepNN) running in real-time on each robot to learn the Barrier Function (BF) only from the robot's LiDAR and odometry measurements. The DeepNN is trained to learn the BF that separates safe and unsafe regions. We implemented our proposed method on simulated and actual Turtlebot3 Burger robot(s) in different scenarios. The implementation results show the effectiveness of the NMPC-LBF method at ensuring safe navigation of the robots. 
    more » « less
  3. This work provides a decentralized approach to safety by combining tools from control barrier functions (CBF) and nonlinear model predictive control (NMPC). It is shown how leveraging backup safety controllers allows for the robust implementation of CBF over the NMPC computation horizon, ensuring safety in nonlinear systems with actuation constraints. A leader-follower approach to control barrier functions (LFCBF) enforcement will be introduced as a strategy to enable a robot leader, in a multi-robot interactions, to complete its task in minimum time, hence aggressively maneuvering. An algorithmic implementation of the proposed solution is provided and safety is verified via simulation. 
    more » « less
  4. Worm-like robots have demonstrated great potential in navigating through environments requiring body shape deformation. Some examples include navigating within a network of pipes, crawling through rubble for search and rescue operations, and medical applications such as endoscopy and colonoscopy. In this work, we developed path planning optimization techniques and obstacle avoidance algorithms for the peristaltic method of locomotion of worm-like robots. Based on our previous path generation study using a modified rapidly exploring random tree (RRT), we have further introduced the Bézier curve to allow more path optimization flexibility. Using Bézier curves, the path planner can explore more areas and gain more flexibility to make the path smoother. We have calculated the obstacle avoidance limitations during turning tests for a six-segment robot with the developed path planning algorithm. Based on the results of our robot simulation, we determined a safe turning clearance distance with a six-body diameter between the robot and the obstacles. When the clearance is less than this value, additional methods such as backward locomotion may need to be applied for paths with high obstacle offset. Furthermore, for a worm-like robot, the paths of subsequent segments will be slightly different than the path of the head segment. Here, we show that as the number of segments increases, the differences between the head path and tail path increase, necessitating greater lateral clearance margins. 
    more » « less
  5. This paper describes a hierarchical solution consisting of a multi-phase planner and a low-level safe controller to jointly solve the safe navigation problem in crowded, dynamic, and uncertain environments. The planner employs dynamic gap analysis and trajectory optimization to achieve collision avoidance with respect to the predicted trajectories of dynamic agents within the sensing and planning horizon and with robustness to agent uncertainty. To address uncertainty over the planning horizon and real-time safety, a fast reactive safe set algorithm (SSA) is adopted, which monitors and modifies the unsafe control during trajectory tracking. Compared to other existing methods, our approach offers theoretical guarantees of safety and achieves collision-free navigation with higher probability in uncertain environments, as demonstrated in scenarios with 20 and 50 dynamic agents. 
    more » « less