skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 20, 2026

Title: Winds Through Time: Interactive Data Visualization and Physicalization for Paleoclimate Communication
We describe a multidisciplinary collaboration to iteratively design an interactive exhibit for a public science center on paleoclimate, the study of past climates. We created a data physicalisation of mountains and ice sheets that can be tangibly manipulated by visitors to interact with a wind simulation visualisation that demonstrates how the climate of North America differed dramatically between now and the peak of the last ice age. We detail the system for interaction and visualisation plus design choices to appeal to an audience that ranges from children to scientists and responds to site requirements.  more » « less
Award ID(s):
2102984
PAR ID:
10615899
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE VIS 2025, VISAP’25, Pictorials and annotated portfolios
Date Published:
Format(s):
Medium: X
Location:
Vienna, Austria
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract From 2015 to 2017, theROSETTA‐Ice project comprehensively mapped Antarctica's Ross Ice Shelf using IcePod, a newly developed aerogeophysical platform. The campaign imaged the ice‐shelf surface with lidar and its internal structure with ice‐penetrating radar. TheROSETTA‐Ice data was combined with pre‐existing ice surface and bed topography digital elevation models to create the first augmented reality (AR) visualisation of the Antarctic Ice Sheet, using the Microsoft HoloLens. TheROSETTA‐Ice datasets support cross‐disciplinary science that aims to understand 4D processes, namely the change of 3D ice‐shelf structures over time. The work presented here usesARto visualise this dataset in 3D and highlights howARcan be simultaneously a useful research tool for interdisciplinary geoscience as well as an effective device for science communication education. 
    more » « less
  2. Abstract In this paper, we detail the process of organising and facilitating a visualisation challenge as part of a larger project centring visual methods. We explore how the visualisation challenge specifically operated to highlight feminist epistemological and methodological principals, and practically, what worked and what didn't. We conclude that visualisation challenges offer exciting potential to jumpstart creative and innovative project development, but if a challenge is to be successful, context matters, and so too do practical and logical considerations. We believe that feminist visualisation challenges offer exciting models to share findings and data, learn from emerging research practices, and build community within and beyond the academy. 
    more » « less
  3. null (Ed.)
    Database management systems (or DBMSs) have been around for decades, and yet are still difficult to use, particularly when trying to identify and fix errors in user programs (or queries). We seek to understand what methods have been proposed to help people debug database queries, and whether these techniques have ultimately been adopted by DBMSs (and users). We conducted an interdisciplinary review of 112 papers and tools from the database, visualisation and HCI communities. To better understand whether academic and industry approaches are meeting the needs of users, we interviewed 20 database users (and some designers), and found surprising results. In particular, there seems to be a wide gulf between users' debugging strategies and the functionality implemented in existing DBMSs, as well as proposed in the literature. In response, we propose new design guidelines to help system designers to build features that more closely match users debugging strategies. 
    more » « less
  4. Abstract The Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated reference database for molecular complexes. It is a unifying web resource linking aggregated data on composition, topology and the function of macromolecular complexes from 28 species. In addition to significantly extending the number of manually curated complexes, we have massively extended the coverage of the human complexome through the incorporation of high confidence assemblies predicted by machine-learning algorithms trained on large-scale experimental data. The current content of the portal comprising 2150 human complexes has been augmented by 14 964 machine-learning (ML) predicted complexes from hu.MAP3.0. We have refactored the website to enable easy search and filtering of these different classes of protein complexes and have implemented the Complex Navigator, a visualisation tool to facilitate comparison of related complexes in the context of orthology or paralogy. We have embedded the Rhea reaction visualisation tool into the website to enable users to view the catalytic activity of enzyme complexes. 
    more » « less
  5. null (Ed.)
    Abstract. The massive amounts of spatio-temporal information often present in LiDAR data sets make their storage, processing, and visualisation computationally demanding. There is an increasing need for systems and tools that support all the spatial and temporal components and the three-dimensional nature of these datasets for effortless retrieval and visualisation. In response to these needs, this paper presents a scalable, distributed database system that is designed explicitly for retrieving and viewing large LiDAR datasets on the web. The ultimate goal of the system is to provide rapid and convenient access to a large repository of LiDAR data hosted in a distributed computing platform. The system is composed of multiple, share-nothing nodes operating in parallel. Namely, each node is autonomous and has a dedicated set of processors and memory. The nodes communicate with each other via an interconnected network. The data management system presented in this paper is implemented based on Apache HBase, a distributed key-value datastore within the Hadoop eco-system. HBase is extended with new data encoding and indexing mechanisms to accommodate both the point cloud and the full waveform components of LiDAR data. The data can be consumed by any desktop or web application that communicates with the data repository using the HTTP protocol. The communication is enabled by a web servlet. In addition to the command line tool used for administration tasks, two web applications are presented to illustrate the types of user-facing applications that can be coupled with the data system. 
    more » « less