skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrafast Transient Absorption Studies of the Dynamics of Free and Coulombically Trapped Polarons in Doped Conjugated Polymers
Abstract The relaxation of photoexcited polarons in doped conjugated polymers is studied with ultrafast transient absorption (TA) spectroscopy to examine the effect of polymer morphology and counterion size on polaron mobility. Processing conditions are first used to create F4TCNQ‐doped (2,3,5,6‐tetrafluoro‐tetracyanoquinodimethane) poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) films with different morphologies and thus free and trapped polarons in different ratios. We find that less crystalline films have a higher fraction of trapped polarons, but, remarkably, that free and trapped polarons have the same relaxation times in all films. Films doped with a large dodecaborane (DDB) cluster‐based dopant are then used to show that trapping is based on Coulomb interactions between polarons and counterions; no trapped polarons are observed in TA due to the reduced Coulomb interaction between the polarons and the DDB counterion. Indeed, the relaxation of polarons in these films is an order of magnitude faster than that in F4TCNQ‐doped films, consistent with reduced trapping. Finally, the results are used to argue that counterion size has a greater effect on polaron mobility than polymer morphology and crystallinity. All of the experiments show that pump/probe spectroscopy provides a straightforward way to determine the local mobilities and degree of carrier trapping in doped conjugated polymer films.  more » « less
Award ID(s):
2305152 2513790
PAR ID:
10615913
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley-VCH
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conjugated polymers (CPs) play a central role in electronic applications due to their easily tuned electronic and ionic conductivities via chemical or electrochemical doping. Although doping improves charge conduction by introducing high densities of carriers into the CP, the accompanying structural changes and their impact on carrier mobility remain elusive. Methods capable of probing carrier distributions and their dependence on polymer morphology are needed to better understand how to improve conductivity. Here, a transient absorption (TA) spectroscopy approach is demonstrated, capable of directly probing mobile and trapped carriers in doped CPs and that is also sensitive to polymer nanostructure by using a model polythiophene system with tuned crystallinity. Exciting polarons in the polymer films produces distinct photoinduced absorption signals in the near‐infrared spectrum that decay during the picosecond timescale in the form of biphasic, stretched exponential kinetics, which reflect a distribution of mobile (free) and trapped polarons. The kinetic analysis provides evidence for mobile polarons irrespective of polymer film crystallinity, whereas polarons located in impure amorphous phases with reduced chain ordering exist within a deeper distribution of trap states. Altogether, these observations suggest a stronger correlation of carrier trapping with local chain ordering (planarity or aggregation) rather than polymer crystallinity. 
    more » « less
  2. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored. 
    more » « less
  3. Abstract Organic mixed ionic–electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low‐cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n‐dopant, tetrabutylammonium hydroxide (TBA‐OH), and identifying a new design consideration underpinning its success. TBA‐OH behaves as both a chemical n‐dopant and morphology additive in donor acceptor co‐polymer naphthodithiophene diimide‐based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+counterion adopts an “edge‐on” location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped‐OECTs and doped‐OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs. 
    more » « less
  4. Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics. 
    more » « less
  5. Thin films of amorphous small molecule semiconductors are widely used in organic light emitting displays and have promising applications in solar cells and thermoelectric devices. Adding dopants increases the conductivity of organic semiconductors, but high concentrations of dopants can disrupt their structural ordering, alter the shape of the electronic density of states in the material, and increase the effects of Coulomb interactions on charge transport. Electrical doping of the solution processable hole-transport material 2,2′,7,7′-tetrakis[ N , N -di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) was studied with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ) as a p-type dopant. Infiltration of F 4 TCNQ from the vapor phase into films of spiro-OMeTAD provided a route to highly doped films with up to 39 ± 2 mol% doping. Structural characterization confirmed that the films remain amorphous even at the highest doping levels with no apparent phase separation. We quantitatively determined the carrier concentration using UV-Vis spectroscopy to interpret the evolution of the electrical conductivity. Over the range of carrier concentrations (10 19 –10 20 1 cm −3 ), the electrical conductivity increased no more than linearly with carrier concentration, while the thermopower had a small increase with carrier concentration. The trends in conductivity and thermopower were related to the unique electronic structure of spiro-OMeTAD, which is able to support two carriers per molecule. Temperature-dependent conductivity measurements were used to further analyze the transport mechanism. 
    more » « less