Abstract Observations of quasar absorption spectra provide strong evidence that reionization extended belowz= 6. The relationship between Lyαforest opacity and local galaxy density (the opacity-density relation) is a key observational test of this scenario. Using narrow-band surveys ofz≈ 5.7 Lyαemitters (LAEs) centered on quasar sight lines, ref. [1] showed that two of the most transmissive Lyαforest segments at this redshift intersect under-densities in the galaxy distribution. This result is in tension with models of a strongly fluctuating ionizing background, including some models of late reionization, which predict that the vast majority of these segments should intersect over-densities where the ionizing intensity is strongest. In this paper, we use radiative transfer simulations to explore in more detail the opacity-density relation predicted by late reionization models. We find that fields like the one toward quasar PSO J359-06 — the more under-dense of the two transmissive sight lines in ref. [1] — are typically associated with recently reionized gas inside of cosmic voids where the hotter temperatures and rarefied densities enhance Lyαtransmission. The opacity-density relation's transmissive end is sensitive to the amount of neutral gas in the voids, as well as its morphology, set by the clustering of reionization sources. These effects are, however, largely degenerate with each other. We demonstrate that models with very different source clustering can nonetheless yield nearly identical opacity-density relations when their reionization histories are calibrated to match Lyα forest mean flux measurements atz< 6. In models with fixed source clustering, a lower neutral fraction increases the likelihood of intersecting hot, recently reionized gas in the voids, increasing the likelihood of observing fields like PSO J359-06. For instance, the probability of observing this field is 15% in a model with neutral fractionxHI= 5% atz= 5.7, three times more likely than in a model withxHI= 15%. The opacity-density relation may thus provide a complementary probe of reionization's tail end.
more »
« less
This content will become publicly available on February 5, 2026
Chasing the Beginning of Reionization in the JWST Era
Abstract Recent JWST observations atz > 6 may imply galactic ionizing photon production above prior expectations. Under observationally motivated assumptions about escape fractions, these suggest az ~ 8–9 end to reionization, in tension with thez < 6 end required by the Lyαforest. In this work, we use radiative transfer simulations to understand what different observations tell us about when reionization ended and when it started. We consider a model that ends too early (zend ≈ 8) alongside two more realistic scenarios withzend ≈ 5: one starting late (z ~ 9) and another early (z ~ 13). We find that the latter requires up to an order-of-magnitude evolution in galaxy ionizing properties at 6 < z < 12, perhaps in tension with measurements ofξionby JWST, which indicate little evolution. We study how these models compare to recent measurements of the Lyαforest opacity, mean free path, intergalactic medium thermal history, visibility ofz > 8 Lyαemitters, and the patchy kSZ signal from the cosmic microwave background (CMB). We find that neither of the late-ending scenarios is strongly disfavored by any single data set. However, a majority of observables, spanning several distinct types of observations, prefer a late start. Not all probes agree with this conclusion, hinting at a possible lack of concordance arising from deficiencies in observations and/or theoretical modeling. Observations by multiple experiments (including JWST, Roman, and CMB-S4) in the coming years will establish a concordance picture of reionization's beginning or uncover such deficiencies.
more »
« less
- Award ID(s):
- 2045600
- PAR ID:
- 10616023
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 980
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 83
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The variations in Lyαforest opacity observed atz> 5.3 between lines of sight to different background quasars are too strong to be caused by fluctuations in the density field alone. The leading hypothesis for the cause of this excess variance is a late, ongoing reionization process at redshifts below six. Another model proposes strong ionizing background fluctuations coupled to a short, spatially varying mean free path of ionizing photons, without explicitly invoking incomplete reionization. With recent observations suggesting a short mean free path atz∼ 6, and a dramatic improvement inz> 5 Lyαforest data quality, we revisit this latter possibility. Here, we apply the likelihood-free inference technique of approximate Bayesian computation (ABC) to jointly constrain the hydrogen photoionization rate ΓHIand the mean free path of ionizing photonsλmfpfrom the effective optical depth distributions atz= 5.0–6.1 from XQR-30. We find that the observations are well-described by fluctuating mean free path models with average mean free paths that are consistent with the steep trend implied by independent measurements atz∼ 5–6, with a concomitant rapid evolution of the photoionization rate.more » « less
-
Abstract We present a new investigation of the intergalactic medium near reionization using dark gaps in the Lyβforest. With its lower optical depth, Lyβoffers a potentially more sensitive probe to any remaining neutral gas compared to the commonly used Lyαline. We identify dark gaps in the Lyβforest using spectra of 42 QSOs atzem> 5.5, including new data from the XQR-30 VLT Large Programme. Approximately 40% of these QSO spectra exhibit dark gaps longer than 10h−1Mpc atz≃ 5.8. By comparing the results to predictions from simulations, we find that the data are broadly consistent both with models where fluctuations in the Lyαforest are caused solely by ionizing ultraviolet background fluctuations and with models that include large neutral hydrogen patches atz< 6 due to a late end to reionization. Of particular interest is a very long (L= 28h−1Mpc) and dark (τeff≳ 6) gap persisting down toz≃ 5.5 in the Lyβforest of thez= 5.85 QSO PSO J025−11. This gap may support late reionization models with a volume-weighted average neutral hydrogen fraction of 〈xH I〉 ≳ 5% byz= 5.6. Finally, we infer constraints on 〈xH I〉 over 5.5 ≲z≲ 6.0 based on the observed Lyβdark gap length distribution and a conservative relationship between gap length and neutral fraction derived from simulations. We find 〈xH I〉 ≤ 0.05, 0.17, and 0.29 atz≃ 5.55, 5.75, and 5.95, respectively. These constraints are consistent with models where reionization ends significantly later thanz= 6.more » « less
-
Abstract Recently, it was pointed out that invoking a large value of the cosmic microwave background (CMB) optical depth,τCMB = 0.09, could help resolve tensions between Dark Energy Survey Instrument DR2 baryon acoustic oscillation data and the CMB. This is larger than the value ofτCMB = 0.058 measured from the Planck low-ℓpolarization data. Traditionally,τCMBis thought of as a constraint on reionization’s midpoint. However, recent observations and modeling of the Lyαforest of high-zquasars at 5 < z < 6 have tightly constrained the timing of the last 10%–20% of reionization, adding nuance to this interpretation. Here, we point out that fixing reionization’s endpoint, in accordance with the latest Lyαforest constraints, rendersτCMBa sensitive probe of the duration of reionization, as well as its midpoint. We compare low and high values ofτCMBto upper limits on the patchy kinematic Sunyaev–Zel'dovich (pkSZ) effect, another CMB observable that constrains reionization’s duration, and find that a value ofτCMB = 0.09 is in ≈2σtension with existing limits on the pkSZ from the South Pole Telescope (SPT). The strength of this tension is sensitive to the choices involved in modeling the other CMB foregrounds in the SPT measurement, and in the modeling of the pkSZ signal itself.more » « less
-
ABSTRACT Quasar absorption spectra measurements suggest that reionization proceeded rapidly, ended late at z ∼ 5.5, and was followed by a flat ionizing background evolution. Simulations that reproduce this behaviour often rely on a fine-tuned galaxy ionizing emissivity, which peaks at z ∼ 6–7 and drops a factor of 1.5–2.5 by z ∼ 5. This is puzzling since the abundance of galaxies is observed to grow monotonically during this period. Explanations for this include effects such as dust obscuration of ionizing photon escape and feedback from photoheating of the IGM. We explore the possibility that this drop in emissivity is instead an artefact of one or more modelling deficiencies in reionization simulations. These include possibly incorrect assumptions about the ionizing spectrum and/or inaccurate modelling of IGM clumping. Our results suggest that the need for a drop could be alleviated if simulations are underestimating the IGM opacity from massive, star-forming haloes. Other potential modelling issues either have a small effect or require a steeper drop when remedied. We construct an illustrative model in which the emissivity is nearly flat at reionization’s end, evolving only ∼0.05 dex at 5 < z < 7. More realistic scenarios, however, require a ∼0.1–0.3 dex drop. We also study the evolution of the Ly α effective optical depth distribution and compare to recent measurements. We find that models that feature a hard ionizing spectrum and/or are driven by faint, low-bias sources most easily reproduce the mean transmission and optical depth distribution of the forest simultaneously.more » « less
An official website of the United States government
