Abstract Substantial progresses in protein structure prediction have been made by utilizing deep‐learning and residue‐residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by incorporating three new components: (a) a new deep learning‐based protein inter‐residue distance predictor to improve template‐free (ab initio) tertiary structure prediction, (b) an enhanced template‐based tertiary structure prediction method, and (c) distance‐based model quality assessment methods empowered by deep learning. In the 2020 CASP14 experiment, MULTICOM predictor was ranked seventh out of 146 predictors in tertiary structure prediction and ranked third out of 136 predictors in inter‐domain structure prediction. The results demonstrate that the template‐free modeling based on deep learning and residue‐residue distance prediction can predict the correct topology for almost all template‐based modeling targets and a majority of hard targets (template‐free targets or targets whose templates cannot be recognized), which is a significant improvement over the CASP13 MULTICOM predictor. Moreover, the template‐free modeling performs better than the template‐based modeling on not only hard targets but also the targets that have homologous templates. The performance of the template‐free modeling largely depends on the accuracy of distance prediction closely related to the quality of multiple sequence alignments. The structural model quality assessment works well on targets for which enough good models can be predicted, but it may perform poorly when only a few good models are predicted for a hard target and the distribution of model quality scores is highly skewed. MULTICOM is available athttps://github.com/jianlin-cheng/MULTICOM_Human_CASP14/tree/CASP14_DeepRank3andhttps://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.
more »
« less
This content will become publicly available on February 1, 2026
DeepPhoPred : Accurate Deep Learning Model to Predict Microbial Phosphorylation
ABSTRACT Phosphorylation is a substantial posttranslational modification of proteins that refers to adding a phosphate group to the amino acid side chain after translation process in the ribosome. It is vital to coordinate cellular functions, such as regulating metabolism, proliferation, apoptosis, subcellular trafficking, and other crucial physiological processes. Phosphorylation prediction in a microbial organism can assist in understanding pathogenesis and host–pathogen interaction, drug and antibody design, and antimicrobial agent development. Experimental methods for predicting phosphorylation sites are costly, slow, and tedious. Hence low‐cost and high‐speed computational approaches are highly desirable. This paper presents a new deep learning tool called DeepPhoPred for predicting microbial phospho‐serine (pS), phospho‐threonine (pT), and phospho‐tyrosine (pY) sites. DeepPhoPred incorporates a two‐headed convolutional neural network architecture with the squeeze and excitation blocks followed by fully connected layers that jointly learn significant features from the peptide's structural and evolutionary information to predict phosphorylation sites. Our empirical results demonstrate that DeepPhoPred significantly outperforms the existing microbial phosphorylation site predictors with its highly efficient deep‐learning architecture. DeepPhoPred as a standalone predictor, all its source codes, and our employed datasets are publicly available athttps://github.com/faisalahm3d/DeepPhoPred.
more »
« less
- Award ID(s):
- 2152059
- PAR ID:
- 10616040
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Proteins: Structure, Function, and Bioinformatics
- Volume:
- 93
- Issue:
- 2
- ISSN:
- 0887-3585
- Page Range / eLocation ID:
- 465 to 481
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In recent years, significant advancements have been made in deep learning‐based computational modeling of proteins, with DeepMind's AlphaFold2 standing out as a landmark achievement. These computationally modeled protein structures not only provide atomic coordinates but also include self‐confidence metrics to assess the relative quality of the modeling, either for individual residues or the entire protein. However, these self‐confidence scores are not always reliable; for instance, poorly modeled regions of a protein may sometimes be assigned high confidence. To address this limitation, we introduce Equivariant Quality Assessment Folding (EQAFold), an enhanced framework that refines the Local Distance Difference Test prediction head of AlphaFold to generate more accurate self‐confidence scores. Our results demonstrate that EQAFold outperforms the standard AlphaFold architecture and recent model quality assessment protocols in providing more reliable confidence metrics. Source code for EQAFold is available athttps://github.com/kiharalab/EQAFold_public.more » « less
-
Abstract Accurate prediction of protein secondary structure (alpha‐helix, beta‐strand and coil) is a crucial step for protein inter‐residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network‐based protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work, we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The major improvements over the DNSS1 method include (a) designing and integrating six advanced one‐dimensional deep convolutional/recurrent/residual/memory/fractal/inception networks to predict 3‐state and 8‐state secondary structure, and (b) using more sensitive profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on independent test data sets with eight state‐of‐art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested on the protein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at:https://github.com/multicom-toolbox/DNSS2.more » « less
-
Abstract The widespread misuse of antibiotics has escalated antibiotic resistance into a critical global public health concern. Beyond antibiotics, metals function as antibacterial agents. Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials and may also foster antibiotic resistance within bacterial communities through co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values and produces a high false negative rate. Other than the best hit approach, only a few antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However, these tools lack comprehensive annotation for MRGs conferring resistance to multiple metals. To address such limitations, we introduce DeepMRG, a deep learning-based multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable of predicting multiple metal labels associated with an MRG. It leverages bit score-based similarity distribution of sequences with experimentally verified MRGs. To ensure unbiased model evaluation, we employed a clustering method to partition our dataset into six subsets, five for cross-validation and one for testing, with non-homologous sequences, mitigating the impact of sequence homology. DeepMRG consistently achieved high overall F1-scores and significantly reduced false negative rates across a wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or isolate assemblies. The web server of DeepMRG can be accessed athttps://deepmrg.cs.vt.edu/deepmrgand the source code is available athttps://github.com/muhit-emon/DeepMRGunder the MIT license.more » « less
-
Abstract BackgroundPlant architecture can influence crop yield and quality. Manual extraction of architectural traits is, however, time-consuming, tedious, and error prone. The trait estimation from 3D data addresses occlusion issues with the availability of depth information while deep learning approaches enable learning features without manual design. The goal of this study was to develop a data processing workflow by leveraging 3D deep learning models and a novel 3D data annotation tool to segment cotton plant parts and derive important architectural traits. ResultsThe Point Voxel Convolutional Neural Network (PVCNN) combining both point- and voxel-based representations of 3D data shows less time consumption and better segmentation performance than point-based networks. Results indicate that the best mIoU (89.12%) and accuracy (96.19%) with average inference time of 0.88 s were achieved through PVCNN, compared to Pointnet and Pointnet++. On the seven derived architectural traits from segmented parts, an R2value of more than 0.8 and mean absolute percentage error of less than 10% were attained. ConclusionThis plant part segmentation method based on 3D deep learning enables effective and efficient architectural trait measurement from point clouds, which could be useful to advance plant breeding programs and characterization of in-season developmental traits. The plant part segmentation code is available athttps://github.com/UGA-BSAIL/plant_3d_deep_learning.more » « less
An official website of the United States government
