We report a Liquid Crystal Display (LCD) structure employing cellulose nanocrystals (CNC) as a recyclable, non‐toxic alignment layer in a twisted nematic configuration The CNC alignment layer, fabricated via spin coating and mechanical rubbing, demonstrated comparable performance to polyimide in transparency, threshold voltage, response speed, and liquid crystal alignment This work demonstrates the viability of CNC alignment layers, advancing LCD technology toward circular economy principles.
more »
« less
This content will become publicly available on November 13, 2025
Carbon dots induced homeotropic alignment in a negative dielectric nematic liquid crystal material
Abstract Recently, doping guest materials such as quantum dots (QDs) into liquid crystals (LCs) has been of great interest since their addition substantially enhances the properties of LC and opens new avenues for scientific advancement. Here, we report the induction of homeotropic alignment in cells without alignment layers of the negative dielectric nematic liquid crystal, N-(4-Methoxybenzylidene)-4-butylaniline (MBBA) by doping with carbon dots (CDs ∼2.8 ± 0.72 nm). The CDs-MBBA composites (CDs concentration: 0.002, 0.01, 0.03, 0.1 and 0.3 wt%) were investigated using optical polarising microscopy, electro-optical and dielectric techniques. Polarizing optical micrographs and voltage dependent optical transmission revealed the induced homeotropic alignment for all the composites under investigation. Interestingly, the least concentrated sample, 0.002 wt% exhibited partial homeotropic alignment. However, due to light leakage, the optical transmission value below threshold voltage was relatively higher than the rest of the composites. MBBA is a negative dielectric material, hence the application of a voltage across the cell was able to switch the alignment from a dark to a bright state for all composites. However, above a certain voltage (>threshold voltage), the bright state produced some instabilities. The value of dielectric permittivity was observed to decrease with increasing concentration, confirming the effect of CDs in producing homeotropic alignment in MBBA. Measurements as a function of temperature were conducted to examine the thermal stability of the induced alignment. The alignment was found to be stable throughout the nematic phase of MBBA. The induction of such alignment without conventional alignment (i.e., rubbing of polyimides) technique can be helpful in addressing the evolving display demands by making liquid crystal displays (LCDs) and other display devices cost effective.
more »
« less
- Award ID(s):
- 2211347
- PAR ID:
- 10616062
- Editor(s):
- Di_Bartolomeo, Antonio
- Publisher / Repository:
- IOP Science
- Date Published:
- Journal Name:
- Nano Express
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2632-959X
- Page Range / eLocation ID:
- 045008
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic feld of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon has rarely been measured, usually due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal, 5CB, doped with 6 nm diameter magnetic and non-magnetic nanoparticles. Surprisingly, for both nanoparticles, we observe at room temperature a net decrease of the threshold field of the Fredericksz transition at low nanoparti cle concentrations, which appears associated with a coating of the nanoparticles by a brush of polydimethylsiloxane copolymer chains inducing planar anchoring of the director on the nanoparticle surface. Moreover the magnetic Fredericksz threshold exhibits non-monotonic behaviour as a function of the nanoparticle concentration for both types of nanoparticles, first decreasing down to a value from 23% to 31% below that of pure 5CB, then increasing with a further increase of nanoparticle concentration. This is interpreted as an aggregation starting at around 0.02 weight fraction that consumes more isolated nanoparticles than those introduced when the concentration is increased above c = 0:05 weight fraction (volume fraction 3:5 x 10^-2). This shows the larger effect of isolated nanoparticles on the threshold with respect to aggregates. From dynamic light scattering measurements we deduced that, if the decrease of the magnetic threshold when the nanoparticle concentration increases is similar for both kinds of nanoparticles, the origin of this decrease is different for magnetic and non-magnetic nanoparticles. For non-magnetic nanoparticles, the behavior may be associated with a decrease of the elastic constant due to weak planar anchoring. For magnetic nanoparticles there are non-negligible local magnetic interactions between liquid crystal molecules and magnetic nanoparticles, leading to an increase of the average order parameter. This magnetic interaction thus favors an easier liquid crystal director rotation in the presence of external magnetic field, able to reorient the magnetic moments of the nanoparticles along with the molecules.more » « less
-
We present the first preparation and properties of chiral nanocapsules. The chiral shell, a polyurea derivative, was obtained by interfacial emulsion polymerization of L-lysine with polymethylene polyphenyl isocyanate. The chirality of these nanocapsules was manifested by its ability to induce conformational deracemization of liquid crystal. This induced chirality was measured using the “Raynes experiment”, in which the cell’s boundary conditions impose a ±90o rotation of the liquid crystal director from one surface to the other. Both left and right-handed director twist domains appear on cooling from the isotropic to the nematic phase. Owing to the weak induced chirality of the liquid crystal, one sense of director rotation is energetically more favorable and its domain size expands, resulting in curvature of the domain walls. The curvature was measured as a function of capsule concentration, and serves as a metric of the induction of chirality in the surrounding liquid crystal.more » « less
-
Abstract Studies of sessile droplets and fluid bridges of a ferroelectric nematic liquid crystal in externally applied electric fields are presented. It is found that above a threshold, the interface of the fluid with air undergoes a fingering instability or ramification, resembling to Rayleigh-type instability observed in charged droplets in electric fields or circular drop-type instabilities observed in ferromagnetic liquids in magnetic field. The frequency dependence of the threshold voltage was determined in various geometries. The nematic director and ferroelectric polarization direction was found to point along the tip of the fingers that appear to repel each other, indicating that the ferroelectric polarization is essentially parallel to the director. The results are interpreted in connection to the Rayleigh and circular drop-type instabilities.more » « less
An official website of the United States government
