skip to main content

Title: Chiral polymeric nanocapsules and their use for conformational deracemization of liquid crystals
We present the first preparation and properties of chiral nanocapsules. The chiral shell, a polyurea derivative, was obtained by interfacial emulsion polymerization of L-lysine with polymethylene polyphenyl isocyanate. The chirality of these nanocapsules was manifested by its ability to induce conformational deracemization of liquid crystal. This induced chirality was measured using the “Raynes experiment”, in which the cell’s boundary conditions impose a ±90o rotation of the liquid crystal director from one surface to the other. Both left and right-handed director twist domains appear on cooling from the isotropic to the nematic phase. Owing to the weak induced chirality of the liquid crystal, one sense of director rotation is energetically more favorable and its domain size expands, resulting in curvature of the domain walls. The curvature was measured as a function of capsule concentration, and serves as a metric of the induction of chirality in the surrounding liquid crystal.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of physical chemistry. C
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral organosilica particles of size ~200 nm were synthesized from an enantio-pure multi-armed chiral D-maltose organosilane precursor in the absence of co-condensation with an achiral monomer. Two distinct experiments were performed to demonstrate the particles’ ability to induce conformational deracemization of a host liquid crystal. The first involves an electric field-induced tilt of the liquid crystal director in the deracemized smectic-A phase. The other involves domain wall curvature separating left- and right-handed liquid crystal helical pitch domains imposed by the cells’ substrates. The results demonstrate unequivocally that enantio-pure organosilica nanoparticles can be synthesized and can induce chirality in a host.
  2. Chiral periodic mesoporous organosilica (PMO) materials have been shown to deracemize a configurationally achiral, but conformationally racemic liquid crystal in which the PMO is embedded. In particular, application of an electric field E in the liquid crystal’s smectic-A phase results in a rotation of the liquid crystal director by an angle proportional to E, which is detected optically — this is the so-called “electroclinic” effect. Here we present results from electroclinic measurements as a function of frequency and temperature, which allow us to distinguish the component of optical signal that arises from liquid crystal chirality induced within the PMO’s chiral pores from that induced just outside the silica colloids. Our central result is that the overwhelming source of our electrooptic signal emanates from outside the PMO, and that the contribution from the liquid crystal embedded in the chiral pores is much smaller and below the noise level.
  3. Defined based on geometric concepts, the origin of biological homochirality including the single handedness of key building blocks, D-sugars and L-amino acids, is still heavily debated in many ongoing research endeavors. Origin aside, transmission and amplification of chirality across length scales are likely essential for the predominance of one handedness over the other in chiral systems and are attracting an unabated interest not only in biology but also in material science. To offer a measure for chirality and through-space chirality transfer, we here provide a report on recent progress toward the development of a suitable approach for an a priori prediction of chirality “strength” and efficacy of chirality transfer from a chiral solute to an achiral nematic solvent. We achieve this by combining an independently calculated, suitable pseudoscalar chirality indicator for the solute with another, independently calculated scalar solute–solvent shape compatibility factor. In our ongoing pursuit to put this approach to the test, we are advancing and refining a versatile experimental platform based on achiral gold nanoparticle cores varying in size, shape, and aspect ratio capped with monolayers of chiral molecules or on intrinsically chiral cellulose nanocrystals that serve as chiral solutes in an achiral nematic liquid crystal phase actingmore »as a reporter medium. The pitch of the ensuing induced chiral nematic liquid crystal phase ultimately serves as a reporter medium that allows us to experimentally quantify and compare chirality and efficacy of chirality transfer.« less
  4. Long time ago, Brochard and de Gennes predicted the possibility of significantly decreasing the critical magnetic feld of the Fredericksz transition (the magnetic Fredericksz threshold) in a mixture of nematic liquid crystals and ferromagnetic particles, the so-called ferronematics. This phenomenon has rarely been measured, usually due to soft homeotropic anchoring induced at the nanoparticle surface. Here we present an optical study of the magnetic Fredericksz transition combined with a light scattering study of the classical nematic liquid crystal, 5CB, doped with 6 nm diameter magnetic and non-magnetic nanoparticles. Surprisingly, for both nanoparticles, we observe at room temperature a net decrease of the threshold field of the Fredericksz transition at low nanoparti cle concentrations, which appears associated with a coating of the nanoparticles by a brush of polydimethylsiloxane copolymer chains inducing planar anchoring of the director on the nanoparticle surface. Moreover the magnetic Fredericksz threshold exhibits non-monotonic behaviour as a function of the nanoparticle concentration for both types of nanoparticles, first decreasing down to a value from 23% to 31% below that of pure 5CB, then increasing with a further increase of nanoparticle concentration. This is interpreted as an aggregation starting at around 0.02 weight fraction that consumes more isolated nanoparticlesmore »than those introduced when the concentration is increased above c = 0:05 weight fraction (volume fraction 3:5 x 10^-2). This shows the larger effect of isolated nanoparticles on the threshold with respect to aggregates. From dynamic light scattering measurements we deduced that, if the decrease of the magnetic threshold when the nanoparticle concentration increases is similar for both kinds of nanoparticles, the origin of this decrease is different for magnetic and non-magnetic nanoparticles. For non-magnetic nanoparticles, the behavior may be associated with a decrease of the elastic constant due to weak planar anchoring. For magnetic nanoparticles there are non-negligible local magnetic interactions between liquid crystal molecules and magnetic nanoparticles, leading to an increase of the average order parameter. This magnetic interaction thus favors an easier liquid crystal director rotation in the presence of external magnetic field, able to reorient the magnetic moments of the nanoparticles along with the molecules.« less
  5. We show that surface interactions can vectorially structure the three-dimensional polarization field of a ferroelectric fluid. The contact between a ferroelectric nematic liquid crystal and a surface with in-plane polarity generates a preferred in-plane orientation of the polarization field at that interface. This is a route to the formation of fluid or glassy monodomains of high polarization without the need for electric field poling. For example, unidirectional buffing of polyimide films on planar surfaces to give quadrupolar in-plane anisotropy also induces macroscopic in-plane polar order at the surfaces, enabling the formation of a variety of azimuthal polar director structures in the cell interior, including uniform and twisted states. In a π-twist cell, obtained with antiparallel, unidirectional buffing on opposing surfaces, we demonstrate three distinct modes of ferroelectric nematic electro-optic response: intrinsic, viscosity-limited, field-induced molecular reorientation; field-induced motion of domain walls separating twisted states of opposite chirality; and propagation of polarization reorientation solitons from the cell plates to the cell center upon field reversal. Chirally doped ferroelectric nematics in antiparallel-rubbed cells produce Grandjean textures of helical twist that can be unwound via field-induced polar surface reorientation transitions. Fields required are in the 3-V/mm range, indicating an in-plane polar anchoring energy ofmore »w P ∼3 × 10 −3 J/m 2 .« less