Abstract The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Increasing environmental fluctuations can dampen variability of endogenously cycling populations
                        
                    
    
            Understanding how populations respond to increasingly variable conditions is a major objective for natural resource managers forecasting extinction risk. The lesson from current modelling is clear: increasing environmental variability increases population abundance variability. We show that this paradigm fails to describe a broad class of empirically observed dynamics, namely endogenously driven population cycles. In contrast to the dominant paradigm, these populations can exhibit reduced long-run population variance under increasing environmental variability. We provide evidence for a mechanistic explanation of this phenomenon that relies on how stochasticity interacts with long transient dynamics present in the deterministic cycling model. This interaction stands in contrast to the often assumed additivity of stochastic and deterministic drivers of population fluctuations. We show evidence for the phenomenon in two cyclical populations: flour beetles and Canadian lynx. We quantify the impact of the phenomenon with new theory that partitions the effects of nonlinear dynamics and stochastic variation on dynamical systems. In both empirical examples, the partitioning shows that the interaction between deterministic and stochastic dynamics reduces the variance in population size. Our results highlight that previous predictions about extinction under environmental variability may prove inadequate to understand the effects of climate change in some populations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10616073
- Publisher / Repository:
- Royal Society Publishing
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Populations and communities fluctuate in their overall numbers through time, and the magnitude of fluctuations in individual species may scale to communities. However, the composite variability at the community scale is expected to be tempered by opposing fluctuations in individual populations, a phenomenon often called theportfolio effect. Understanding population variability, how it scales to community variability, and the spatial scaling in this variability are pressing needs given shifting environmental conditions and community composition. We explore evidence for portfolio effects using null community simulations and a large collection of empirical community time series from the BioTIME database. Additionally, we explore the relative roles of habitat type and geographic location on population and community temporal variability. We find strong portfolio effects in our theoretical community model, but weak effects in empirical data, suggesting a role for shared environmental responses, interspecific competition, or a litany of other factors. Furthermore, we observe a clear latitudinal signal – and differences among habitat types – in population and community variability. Together, this highlights the need to develop realistic models of community dynamics, and hints at spatial, and underlying environmental, gradients in variability in both population and community dynamics.more » « less
- 
            Abstract Detecting declines and quantifying extinction risk of long‐lived, highly fecund vertebrates, including fishes, reptiles, and amphibians, can be challenging. In addition to the false notion that large clutches always buffer against population declines, the imperiled status of long‐lived species can often be masked by extinction debt, wherein adults persist on the landscape for several years after populations cease to be viable. Here we develop a demographic model for the eastern hellbender (Cryptobranchus alleganiensis), an imperiled aquatic salamander with paternal care. We examined the individual and interactive effects of three of the leading threats hypothesized to contribute to the species' demise: habitat loss due to siltation, high rates of nest failure, and excess adult mortality caused by fishing and harvest. We parameterized the model using data on their life history and reproductive ecology to model the fates of individual nests and address multiple sources of density‐dependent mortality under both deterministic and stochastic environmental conditions. Our model suggests that high rates of nest failure observed in the field are sufficient to drive hellbender populations toward a geriatric age distribution and eventually to localized extinction but that this process takes decades. Moreover, the combination of limited nest site availability due to siltation, nest failure, and stochastic adult mortality can interact to increase the likelihood and pace of extinction, which was particularly evident under stochastic scenarios. Density dependence in larval survival and recruitment can severely hamper a population's ability to recover from declines. Our model helps to identify tipping points beyond which extinction becomes certain and management interventions become necessary. Our approach can be generalized to understand the interactive effects of various threats to the extinction risk of other long‐lived vertebrates. As we face unprecedented rates of environmental change, holistic approaches incorporating multiple concurrent threats and their impacts on different aspects of life history will be necessary to proactively conserve long‐lived species.more » « less
- 
            What prevents populations of a species from adapting to the novel environments outside the species' geographic distribution? Previous models highlighted how gene flow across spatial environmental gradients determines species expansion versus extinction and the location of species range limits. However, space is only one of two axes of environmental variation—environments also vary in time, and we know temporal environmental variation has important consequences for population demography and evolution. We used analytical and individual-based evolutionary models to explore how temporal variation in environmental conditions influences the spread of populations across a spatial environmental gradient. We find that temporal variation greatly alters our predictions for range dynamics compared to temporally static environments. When temporal variance is equal across the landscape, the fate of species (expansion versus extinction) is determined by the interaction between the degree of temporal autocorrelation in environmental fluctuations and the steepness of the spatial environmental gradient. When the magnitude of temporal variance changes across the landscape, stable range limits form where this variance increases maladaptation sufficiently to prevent local persistence. These results illustrate the pivotal influence of temporal variation on the likelihood of populations colonizing novel habitats and the location of species range limits.more » « less
- 
            Dr Andrea E. A. Stephens (Ed.)To forecast extinction risks of natural populations under climate change and direct human impacts, an integrative understanding of both phenotypic plasticity and adaptive evolution is essential. To date, the evidence for whether, when, and how much plasticity facilitates adaptive responses in changing environments is contradictory. We argue that explicitly considering three key environmental change components – rate of change, variance, and temporal autocorrelation – affords a unifying framework of the impact of plasticity on adaptive evolution. These environmental components each distinctively effect evolutionary and ecological processes underpinning population viability. Using this framework, we develop expectations regarding the interplay between plasticity and adaptive evolution in natural populations. This framework has the potential to improve predictions of population viability in a changing world.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
