skip to main content

Title: Increasing temporal variance leads to stable species range limits
What prevents populations of a species from adapting to the novel environments outside the species' geographic distribution? Previous models highlighted how gene flow across spatial environmental gradients determines species expansion versus extinction and the location of species range limits. However, space is only one of two axes of environmental variation—environments also vary in time, and we know temporal environmental variation has important consequences for population demography and evolution. We used analytical and individual-based evolutionary models to explore how temporal variation in environmental conditions influences the spread of populations across a spatial environmental gradient. We find that temporal variation greatly alters our predictions for range dynamics compared to temporally static environments. When temporal variance is equal across the landscape, the fate of species (expansion versus extinction) is determined by the interaction between the degree of temporal autocorrelation in environmental fluctuations and the steepness of the spatial environmental gradient. When the magnitude of temporal variance changes across the landscape, stable range limits form where this variance increases maladaptation sufficiently to prevent local persistence. These results illustrate the pivotal influence of temporal variation on the likelihood of populations colonizing novel habitats and the location of species range limits.  more » « less
Award ID(s):
2019528 2010892
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environmental fluctuations are pervasive in nature, but the influence of non-directional temporal variation on range limits has received scant attention. We synthesize insights from the literature and use simple models to make conceptual points about the potentially wide range of ecological and evolutionary effects of temporal variation on range limits. Because organisms respond nonlinearly to environmental conditions, temporal variation can directionally alter long-term growth rates, either to shrink or to expand ranges. We illustrate this diversity of outcomes with a model of competition along a mortality gradient. Temporal variation can permit transitions between alternative states, potentially facilitating range expansion. We show this for variation in dispersal, using simple source–sink population models (with strong Allee effects, or with gene flow hampering local adaptation). Temporal variation enhances extinction risk owing to demographic stochasticity, rare events, and loss of genetic variation, all tending to shrink ranges. However, specific adaptations to exploit variation (including dispersal) may permit larger ranges than in similar but constant environments. Grappling with temporal variation is essential both to understand eco-evolutionary dynamics at range limits and to guide conservation and management strategies. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’. 
    more » « less
  2. Abstract

    Behavioral thermoregulation is an efficient mechanism to buffer the physiological effects of climate change. Thermal ecology studies have traditionally tested how thermal constraints shape thermoregulatory behaviors without accounting for the potential major effects of landscape structure and water availability. Thus, we lack a general understanding of the multifactorial determinants of thermoregulatory behaviors in natural populations. In this study, we quantified the relative contribution of elevation, thermal gradient, moisture gradient, and landscape structure in explaining geographic variation in thermoregulation strategies of a terrestrial ectotherm species. We measured field‐active body temperature, thermal preferences, and operative environmental temperatures to calculate thermoregulation indices, including thermal quality of the habitat and thermoregulation efficiency for a very large sample of common lizards (Zootoca vivipara) from 21 populations over 3 yr across the Massif Central mountain range in France. We used an information‐theoretic approach to compare eight a priori thermo‐hydroregulation hypotheses predicting how behavioral thermoregulation should respond to environmental conditions. Environmental characteristics exerted little influence on thermal preference with the exception that females from habitats with permanent access to water had lower thermal preferences. Field body temperatures and accuracy of thermoregulation were best predicted by the interaction between air temperature and a moisture index. In mesic environments, field body temperature and thermoregulation accuracy increased with air temperature, but they decreased in drier habitats. Thermoregulation efficiency (difference between thermoregulation inaccuracy and the thermal quality of the habitat) was maximized in cooler and more humid environments and was mostly influenced by the thermal quality of the habitat. Our study highlights complex patterns of variation in thermoregulation strategies, which are mostly explained by the interaction between temperature and water availability, independent of the elevation gradient or thermal heterogeneity. Although changes in landscape structure were expected to be the main driver of extinction rate of temperate zone ectotherms with ongoing global change, we conclude that changes in water availability coupled with rising temperatures might have a drastic impact on the population dynamics of some ectotherm species.

    more » « less
  3. Abstract

    While the tendency to return to previously visited locations—termed ‘site fidelity’—is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals’ recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity.

    We compared inter‐year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance‐based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size.

    Mule deerOdocoileus hemionusand mooseAlces alcesexhibited relatively strong site fidelity, while wildebeestConnochaetes taurinusand barren‐ground caribouRangifer tarandus grantihad relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a ‘win‐stay, lose‐switch’ strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested.

    Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter‐annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species‐specific differences in attraction to known sites, contribute to variation in the expression of this behaviour.

    Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.

    more » « less
  4. Abstract

    Species engage in mutually beneficial interspecific interactions (mutualisms) that shape their population dynamics in ecological communities. Species engaged in mutualisms vary greatly in their degree of dependence on their partner from complete dependence (e.g., yucca and yucca moth mutualism) to low dependence (e.g., generalist bee with multiple plant species). While current empirical studies show that, in mutualisms, partner dependence can alter the speed of a species' range expansion, there is no theory that provides conditions when expansion is sped up or slowed down. To address this, we built a spatially explicit model incorporating the population dynamics of two dispersing species interacting mutualistically. We explored how mutualisms impacted range expansion across a gradient of dependence (from complete independence to obligacy) between the two species. We then studied the conditions in which the magnitude of the mutualistic benefits could hinder versus enhance the speed of range expansion. We showed that either complete dependence, no dependence, or intermediate degree of dependence on a mutualist partner can lead to the greatest speeds of a focal species' range expansion based on the magnitude of benefits exchanged between partner species in the mutualism. We then showed how different degrees of dependence between species could alter the spatial distribution of the range expanding populations. Finally, we identified the conditions under which mutualistic interactions can turn exploitative across space, leading to the formation of a species' range limits. Our work highlights how couching mutualisms and mutualist dependence in a spatial context can provide insights about species range expansions, limits, and ultimately their distributions.

    more » « less
  5. Abstract

    Understanding how the environment shapes genetic variation provides critical insight about the evolution of local adaptation in natural populations. At multiple spatial scales and multiple geographic contexts within a single species, such information could address a number of fundamental questions about the scale of local adaptation and whether or not the same loci are involved at different spatial scales or geographic contexts. We used landscape genomic approaches from three local elevational transects and rangewide sampling to (a) identify genetic variation underlying local adaptation to environmental gradients in the California endemic oak,Quercus lobata; (b) examine whether putatively adaptive SNPs show signatures of selection at multiple spatial scales; and (c) map putatively adaptive variation to assess the scale and pattern of local adaptation. Of over 10 k single‐nucleotide polymorphisms (SNPs) generated with genotyping‐by‐sequencing, we found signatures of natural selection by climate or local environment at over 600 SNPs (536 loci), some at multiple spatial scales across multiple analyses. Candidate SNPs identified with gene–environment tests (LFMM) at the rangewide scale also showed elevated associations with climate variables compared to the background at both rangewide and elevational transect scales with gradient forest analysis. Some loci overlap with those detected in other oak species, raising the question of whether the same loci might be involved in local climate adaptation in different congeneric species that inhabit different geographic contexts. Mapping landscape patterns of adaptive versus background genetic variation identified regions of marked local adaptation and suggests nonlinear association of candidate SNPs and environmental variables. Taken together, our results offer robust evidence for novel candidate genes for local climate adaptation at multiple spatial scales.

    more » « less