skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using latent variables that evolve according to simple locally linear dynamics. However, existing methods for latent variable estimation are not robust to dynamical noise and system nonlinearity due to noise-sensitive inference procedures and limited model formulations. This can lead to inconsistent results on signals with similar dynamics, limiting the model's ability to provide scientific insight. In this work, we address these limitations and propose a probabilistic approach to latent variable estimation in decomposed models that improves robustness against dynamical noise. Additionally, we introduce an extended latent dynamics model to improve robustness against system nonlinearities. We evaluate our approach on several synthetic dynamical systems, including an empirically-derived brain-computer interface experiment, and demonstrate more accurate latent variable inference in nonlinear systems with diverse noise conditions. Furthermore, we apply our method to a real-world clinical neurophysiology dataset, illustrating the ability to identify interpretable and coherent structure where previous models cannot.  more » « less
Award ID(s):
2340338
PAR ID:
10616091
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Open Review
Date Published:
ISSN:
1049-5258
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. To understand the complex nonlinear dynamics of neural circuits, we fit a structured state-space model called tree-structured recurrent switching linear dynamical system (TrSLDS) to noisy high-dimensional neural time series. TrSLDS is a multi-scale hierarchical generative model for the state-space dynamics where each node of the latent tree captures locally linear dynamics. TrSLDS can be learned efficiently and in a fully Bayesian manner using Gibbs sampling. We showcase TrSLDS' potential of inferring low-dimensional interpretable dynamical systems on a variety of examples. 
    more » « less
  2. Abstract We describe a stochastic, dynamical system capable of inference and learning in a probabilistic latent variable model. The most challenging problem in such models—sampling the posterior distribution over latent variables—is proposed to be solved by harnessing natural sources of stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics. The model parameters are learned by simultaneously evolving according to another continuous-time equation, thus bypassing the need for digital accumulators or a global clock. Moreover, we show that Langevin dynamics lead to an efficient procedure for sampling from the posterior distribution in the L0 sparse regime, where latent variables are encouraged to be set to zero as opposed to having a small L1 norm. This allows the model to properly incorporate the notion of sparsity rather than having to resort to a relaxed version of sparsity to make optimization tractable. Simulations of the proposed dynamical system on both synthetic and natural image data sets demonstrate that the model is capable of probabilistically correct inference, enabling learning of the dictionary as well as parameters of the prior. 
    more » « less
  3. Nonlinear state-space models are powerful tools to describe dynamical structures in complex time series. In a streaming setting where data are processed one sample at a time, simultaneous inference of the state and its nonlinear dynamics has posed significant challenges in practice. We develop a novel online learning framework, leveraging variational inference and sequential Monte Carlo, which enables flexible and accurate Bayesian joint filtering. Our method provides an approximation of the filtering posterior which can be made arbitrarily close to the true filtering distribution for a wide class of dynamics models and observation models. Specifically, the proposed framework can efficiently approximate a posterior over the dynamics using sparse Gaussian processes, allowing for an interpretable model of the latent dynamics. Constant time complexity per sample makes our approach amenable to online learning scenarios and suitable for real-time applications. 
    more » « less
  4. State estimation and control are often addressed separately, leading to unsafe execution due to sensing noise, execution errors, and discrepancies between the planning model and reality. Simultaneous control and trajectory estimation using probabilistic graphical models has been proposed as a unified solution to these challenges. Previous work, however, relies heavily on appropriate Gaussian priors and is limited to holonomic robots with linear time-varying models. The current research extends graphical optimization methods to vehicles with arbitrary dynamical models via Simultaneous Trajectory Estimation and Local Adaptation (STELA). The overall approach initializes feasible trajectories using a kinodynamic, sampling-based motion planner. Then, it simultaneously: (i) estimates the past trajectory based on noisy observations, and (ii) adapts the controls to be executed to minimize deviations from the planned, feasible trajectory, while avoiding collisions. The proposed factor graph representation of trajectories in STELA can be applied for any dynamical system given access to first or second-order state update equations, and introduces the duration of execution between two states in the trajectory discretization as an optimization variable. These features provide both generalization and flexibility in trajectory following. In addition to targeting computational efficiency, the proposed strategy performs incremental updates of the factor graph using the iSAM algorithm and introduces a time-window mechanism. This mechanism allows the factor graph to be dynamically updated to operate over a limited history and forward horizon of the planned trajectory. This enables online updates of controls at a minimum of 10Hz. Experiments demonstrate that STELA achieves at least comparable performance to previous frameworks on idealized vehicles with linear dynamics. STELA also directly applies to and successfully solves trajectory following problems for more complex dynamical models. Beyond generalization, simulations assess STELA's robustness under varying levels of sensing and execution noise, while ablation studies highlight the importance of different components of STELA. Real-world experiments validate STELA's practical applicability on a low-cost MuSHR robot, which exhibits high noise and non-trivial dynamics. 
    more » « less
  5. null (Ed.)
    Kotlarski's identity has been widely used in applied economic research based on repeated‐measurement or panel models with latent variables. However, how to conduct inference for these models has been an open question for two decades. This paper addresses this open problem by constructing a novel confidence band for the density function of a latent variable in repeated measurement error model. The confidence band builds on our finding that we can rewrite Kotlarski's identity as a system of linear moment restrictions. Our approach is robust in that we do not require the completeness. The confidence band controls the asymptotic size uniformly over a class of data generating processes, and it is consistent against all fixed alternatives. Simulation studies support our theoretical results. 
    more » « less