Abstract We use heat flux measurements colocated with seismic reflection profiles over a buried basement high on the Juan de Fuca plate ∼25 km seaward of the deformation front offshore Oregon to test for the presence of hydrothermal circulation in the oceanic crust. We also revisit heat flux data crossing a buried basement high ∼25 km seaward of the deformation front ∼150 km north, offshore Washington. Seafloor heat flux is inversely correlated with sediment thickness, consistent with vigorous hydrothermal circulation in the basement aquifer homogenizing temperatures at the top of the basement. Heat flux immediately above the summit of the basement highs is greater than expected solely from conduction. Fluid seepage at rates of ∼2.6–5.4 cm yr−1in a 1–1.5 km‐wide conduit through ∼800–1,300 m thick sediment sections above these basement highs can explain these observations. Observations of thermally significant fluid seepage through sediment >225 m thick on oceanic crust are unprecedented. High sediment permeability, high fluid overpressure in the basement, or a combination of both is required to drive fluid seepage at the observed rates. We infer that rapid seepage occurs because the basement highs rise above the low permeability basal sediment with their tops protruding into the base of high permeability Nitinat or Astoria Fan sediment. Seepage from basement highs penetrating into the submarine fans can affect the thermal state of crust entering the subduction zone.
more »
« less
This content will become publicly available on July 11, 2026
Examining Controls on Fluid Overpressure in Buried Basement Highs of Oceanic Crust: Implications for Permeability of the Astoria Fan
Abstract Vigorous hydrothermal circulation in the basement aquifer of the oceanic crust homogenizes temperatures within the aquifer and generates fluid overpressures at the tops of buried basement highs. At a site ∼25 km seaward of the Cascadia subduction zone deformation front, fluid overpressure at the top of the buried MARGIN seamount drives vertical fluid seepage through sediment overlying the seamount and results in anomalously high heat flux at the seafloor. In this study, we use numerical models of coupled heat and fluid transport to investigate the sensitivity of fluid overpressures to sediment thickness and basement relief for a 2D buried basement ridge. For ∼8 Ma oceanic crust buried by low permeability sediment, we find that the overpressure at the summit of a basement ridge increases by ∼0.10 kPa per meter of burial depth and by ∼0.71 kPa per meter of basement relief. For a 3D system with a geometry similar to the MARGIN seamount buried by low permeability sediment, the modeled fluid overpressure at the top of the seamount is ∼996 kPa. However, the Astoria Fan sediment above the MARGIN seamount likely has relatively high permeability, permitting rapid vertical seepage, thereby reducing fluid overpressure maintained at the top of the seamount. An overpressure of 492 kPa at the summit of the buried seamount at the MARGIN site and a bulk permeability of the Astoria Fan sediments of 4 × 10−15 m2are consistent with the seepage rate of 5.4 cm yr−1estimated from the elevated heat flux.
more »
« less
- Award ID(s):
- 2034896
- PAR ID:
- 10616139
- Publisher / Repository:
- Geochemistry, Geophysics, Geosystems
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 26
- Issue:
- 7
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sediment thermal history controls the progress of diagenetic reactions that can alter the mechanical behavior of material entering a subduction zone that then: accretes to the margin, hosts the plate boundary interface, or is carried deeper within the Earth. On the Cascadia margin offshore Oregon (USA), hydrothermal circulation in the oceanic crust affects thermally controlled processes, enhancing sediment alteration above the MARGIN seamount, which is buried by the Astoria Fan. Hydrothermal circulation increases temperatures at the summit of the seamount and in the overlying sediment by up to ∼100°C. We use sediment thermal history constrained by heat flux observations to model the expected progress of the smectite‐to‐illite reaction around the MARGIN seamount. Above the seamount, the smectite‐to‐illite reaction is expected to progress to completion ∼250 m below the seafloor; away from the seamount, smectite is likely unaltered to a burial depth of ∼800 m. The altered sediment above the seamount has higher rigidity and p‐wave velocity than the surrounding sediment. Spatial variability in sediment alteration may be present around other buried seamounts. We use vertical gravity gradient anomalies to estimate the locations and heights of additional seamounts. Each of these seamounts may have altered sediment around it, which could affect deformation and seismicity in the margin wedge. Because cemented sediment with greater elastic strength is better able to store elastic strain energy, enhanced sediment alteration and cementation above seamounts entering the subduction zone could facilitate earthquake nucleation for material in the margin wedge that was above a seamount prior to subduction.more » « less
-
Shallow seabed depressions attributed to focused fluid seepage, known as pockmarks, have been documented in all continental margins. In this study, we demonstrate how pockmark formation can be the result of a combination of multiple factors—fluid type, overpressures, seafloor sediment type, stratigraphy and bottom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwater and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shallow to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and freshened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea-level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coincides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.more » « less
-
The MARGIN site is at a buried basement high (likely a buried seamount) offshore Oregon, ~25 km seaward of the Cascadia subduction zone deformation front. The buried basement high rises ~1300 m above the surrounding basaltic basement. The MARGIN basement high was first identified on the north-south-trending MARGIN transect, collected as part of the Juan de Fuca Ridge-to-Trench project; that seismic transect crossed the flank of the MARGIN basement high. Subsequently, the east-west-trending Line PD11 collected as part of the MGL2104 CASIE21 project conducted in 2021 crossed a higher and more substantial portion of the MARGIN basement high. In 2022, in-situ measurements of thermal gradient were collected crossing and around the MARGIN basement high using a 3.5-m violin-style heat flow probe. This multi-penetration heat flow probe was loaned from the U.S. Marine Heat Flow Capability. The thermistor string houses 11 thermistors. The in-situ thermal gradient is combined with an assumed thermal conductivity versus depth trend to determine the heat flow. The data was processed using SlugHeat (https://marine-heatflow.ceoas.oregonstate.edu/software/). The data file is in ASCII tab-separated format, with column headers. Funding was provided by National Science Foundation awards OCE19-24331, OCE20-34872, and OCE20-34896.more » « less
-
Abstract Oceanic plate seamounts are believed to play an important role in megathrust rupture at subduction zones, although consistent relationships between subducting seamounts and plate interface seismicity patterns are not found. While most studies focus on impacts linked to their topography, seamounts are also sites of heterogeneity in incoming plate sediments that may contribute to megathrust properties. Here, we characterize incoming plate sediments along the Cascadia subduction zone using new high‐resolution seismic images and compressional wave (Vp) models from the CASIE21 multi‐channel‐seismic experiment. Nine fully‐to‐partially buried seamounts are identified seaward of the deformation front within a region of thick Plio‐Pleistocene sediment where the Juan de Fuca plate is bending into the subduction zone. Anomalously highVpsediment blankets two seamounts offshore Washington‐Central Oregon, with wavespeeds reaching 36% and 20% higher than adjacent sediment. Fluid seepage and temperatures warm enough for smectite diagenesis extending to shallow depths are inferred from heat flow studies and we attributeVpanomalies to sediment cementation linked primarily to smectite dehydration. Signatures of fluid seepage above seamounts are also identified offshore Vancouver Island, but anomalously lowVpsediment below distinct reverse polarity reflections are found, indicating trapped fluids, and cooler basement temperatures are inferred. Landward of one seamount, a zone of enhanced sediment compaction is found, consistent with the predicted stress modulating effects of seamount subduction. These new findings of variations in sediment diagenesis and strength around seamounts prior to subduction may contribute to the diverse megathrust frictional properties and seismicity patterns evident at subducting seamounts.more » « less
An official website of the United States government
