Abstract Parablechnumis the most diverse genus in the fern family Blechnaceae, with about 70 species, mainly from Central and South America, the Austropacific, and a few in Africa. Species delimitation inParablechnumis challenging, and regional studies vary in species recognized. This genus is generally found in humid mid- to high-elevation forests, especially in the Andes. Ecuador is notable for its high species richness, particularly in the poorly explored Cordillera del Cóndor, a sub-Andean range with a distinctive geology contributing to high plant diversity and endemism. Since the early 2000s, botanical expeditions have revealed numerous endemic species, highlighting the region's significance. In 2006, an unusualParablechnumspecies was collected in the Cordillera del Cóndor. Here, we describe it as a new species,Parablechnum shuariorum. It grows on sandstone cliffs along small rivers and can be distinguished by its fertile fronds, which are shorter than its sterile ones, and its densely scaly rachis. This species, endemic to the Cordillera del Cóndor, is found at elevations of 900–1,600 m. It is named after the Shuar people, whose lands include the collection sites. Preliminary conservation assessment suggests thatP. shuariorumis endangered due to a limited area of occupancy and threats from human activities, such as mining.
more »
« less
This content will become publicly available on January 30, 2026
The Andes of Colombia and Ecuador as a Barrier to Fern and Lycophyte Species from Mesoamerica
We compiled a list of the fern and lycophyte species that occur in Mesoamerica and extend into Colombia and Ecuador, where they are restricted to the western side of the Andes; that is, they occur only west of the crest of the easternmost cordillera and are absent from that cordillera’s eastern slope and in adjacent Amazonia. We found 131 species with this Mesoamerican and west-of-the-eastern-cordillera distribution. Those 131 species constitute 7% of the total 1805 fern and lycophyte species that have been recorded west of the crest of the easternmost cordillera in Colombia and Ecuador. All 131 species have elevation ranges with midpoints at low (0–900 m) or middle (900–3000 m) elevations, and none occur above 3000 m. This suggests the cordilleras have acted as elevational barriers. We also investigated the blockage of these 131 species by each of the Andean cordilleras. We found that 75 (57%) of the 131 species were limited eastward by the western cordillera, 15 (11%) by the central cordillera (this cordillera in Colombia only), and 40 (31%) by the eastern cordillera. If estimates of endemics to the western Andean region are considered, then at least 20%–22% of all fern and lycophyte species in the region are restricted west of the crest of the easternmost cordillera. Although usually exhibiting larger geographic distributions compared to angiosperms, fern and lycophyte species may show significant geographic restriction by mountain ranges.
more »
« less
- Award ID(s):
- 2330409
- PAR ID:
- 10616303
- Publisher / Repository:
- Missouri Botanic Garden Press
- Date Published:
- Journal Name:
- Annals of the Missouri Botanical Garden
- Volume:
- 110
- ISSN:
- 0026-6493
- Page Range / eLocation ID:
- 88 to 110
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Iochroma orozcoaeA.Orejuela & S.D.Sm.,sp. nov.(Solanaceae) is described from the Andean forests of Cundinamarca in the eastern cordillera of Colombia.Iochroma orozcoaewas first collected by the eminent Spanish priest and botanist José Celestino Mutis in the late part of the 18thcentury, but the specimens have lain unrecognised in herbaria for over 200 years. The species shares many features with its closest relative,Iochroma baumiiS.D.Sm. & S.Leiva, but it differs from it in having small flowers with five corolla lobes and few inflorescences per branch, located near the shoot apex with 1 to 4 (–8) flowers, fruits that are greenish-yellow when ripe and its restricted geographic distribution. A description ofI. orozcoaeis provided, along with a detailed illustration, photographs of live plants, a comparison with closely-related species and a key to all Colombian species ofIochromaBenth. In closing, we emphasise the value of historical collections for the knowledge of biodiversity.more » « less
-
The troglomorphic scorpion genus Troglotayosicus Lourenço, 1981, occurs in hypogean and epigean habitats in the Andean and Amazonian rainforests of Colombia and Ecuador. The phylogenetic relationships among the species of Troglotayosicus are currently unknown. In the present contribution, a new species, Troglotayosicus akaido, sp. nov., is described from specimens collected in the leaf litter of a primary rainforest in the Colombian Amazon, near the border with Peru, raising the number of species in the genus to seven. The new species represents the easternmost record of the genus and further extends its distribution into the Amazon. Its phylogenetic position was tested in an analysis of all species of the genus and two outgroup taxa, scored for 131 morphological characters (16 new and 115 legacy; 104 binary and 27 mulstistate) analyzed with maximum likelihood under the MK model. Troglotayosicus was recovered as monophyletic and composed of two main clades. The morphological survey revealed that the ventral macrosetae of the leg telotarsi of the type species, Troglotayosicus vachoni Lourenço, 1981, are simple, subspiniform macrosetae, irregularly distributed, but not arranged into clusters nor forming elongated clusters of setae/spinules, as previously suggested. A distribution map and key to the identification of the species of Troglotayosicus are provided. Further research, incorporating molecular data, is needed to understand the evolution and biogeographical history of this enigmatic scorpion genus.more » « less
-
ABSTRACT The topographic growth of the Eastern Cordillera in the northern Andes of Colombia is a critical event in the tectonic and paleogeographic evolution of the western Amazon Basin. Documentation of early orogenic growth is enabled through multi‐proxy provenance signatures recorded in the adjacent retro‐foreland basin. In broken foreland basins, basement highs interrupt the lateral continuity of facies belts and potentially mask provenance signals. The Putumayo Basin is a broken foreland basin in western Amazonia at ~1°–3° N, where the Florencia, Macarena, and El Melón‐Vaupes basement highs have compartmentalised discrete depocentres during basin development. This study presents new evidence from stratigraphic, conglomerate clast count, sandstone petrography, detrital zircon U–Pb geochronology and novel apatite detrital U–Pb age trace element geochemistry analyses. The results show that the southern Eastern Cordillera (i.e., Garzon Massif) and Putumayo Basin basement highs were initially uplifted during the Late Cretaceous coeval with the Central Cordillera, most likely associated with the collision of the Caribbean Large Igneous Province (CLIP). Distinctive facies distributions and provenance changes characterise the Putumayo Basin over a ~300 km distance from south to north, in the Rumiyaco Formation and Neme Sandstone. Detrital zircon U–Pb ages record a sharp reversal from easterly derived Proterozoic to westerly sourced late Mesozoic–Cenozoic Andean zircons derived principally from the Central Cordillera. Provenance signatures of the synorogenic Eocene Pepino Formation demonstrate the continued exhumation of the Eastern Cordillera as a second‐order source area. However, the emergence of the northern intraplate highs modulated the provenance signature due to the rapid unroofing of relatively thinner marine sedimentary cover strata that overlie the Putumayo basement, in comparison to the thicker sequences of the southern basin. The provenance data and facies distributions of the Oligocene–Miocene Orito Group were more heterogeneous due to strike‐slip deformation, associated with major plate tectonic reorganisation as the Nazca Plate subducted under the South American margin.more » « less
-
Abstract The northern Andes of southern Colombia contain a rich geologic history recorded by Proterozoic to Cenozoic metamorphic, igneous, and sedimentary rocks. The region plays a pivotal role in understanding the evolution of topography in northwestern South America and the development of large river systems, such as the Amazon, Orinoco, and Magdalena rivers. However, understanding of the basement framework has been hindered by challenging access, security concerns, tropical climate, and outcrop scarcity. Further, an insufficient geochronologic characterization of Andean basement complicates provenance interpretations of adjacent basins and restricts understanding of the paleogeographic evolution of southern Colombia. To address these issues, this paper presents a zircon U-Pb geochronological dataset derived for 24 bedrock samples and 19 modern river samples. The zircon U-Pb results reveal that the Eastern Cordillera of southern Colombia is underlain by basement rocks that originated in various tectonic events since ca. 1.5 Ga, including the accretion of discrete terranes. The oldest rocks, found in the Garzon Massif, are high-grade metamorphic rocks with contrasting Proterozoic protolith crystallization ages. Whereas the SW part of the massif formed during the Putumayo Orogeny (ca. 1.2–0.9 Ga), we report orthogneisses for the NE segment with protoliths formed at ca. 1.5 Ga, representing the NW continuation of the Rio Negro Jurena province of the Amazonian Craton. In contrast, crystalline rocks of the Central Cordillera primarily consist of Permian–Triassic (ca. 270–250 Ma) and Jurassic–Cretaceous (ca. 180–130 Ma) igneous rocks formed in a magmatic arc. In southernmost Colombia, the Putumayo Mountains mainly consist of Jurassic–Cretaceous (180–130 Ma) plutonic and volcanic rocks. Furthermore, we analyzed the heavy mineral abundances in modern river sands in southern Colombia (spanning 1°N–5°N) and found that key minerals such as garnet and epidote can be utilized to trace high-grade metamorphic and igneous lithologies, respectively, in the river catchments. The differentiation of basement ages for separate tectonic provinces, combined with heavy mineral abundances in modern sands, can serve as unique fingerprints in provenance analyses to trace the topographic and exhumational evolution of different Andean regions through time.more » « less
An official website of the United States government
