ABSTRACT The topographic growth of the Eastern Cordillera in the northern Andes of Colombia is a critical event in the tectonic and paleogeographic evolution of the western Amazon Basin. Documentation of early orogenic growth is enabled through multi‐proxy provenance signatures recorded in the adjacent retro‐foreland basin. In broken foreland basins, basement highs interrupt the lateral continuity of facies belts and potentially mask provenance signals. The Putumayo Basin is a broken foreland basin in western Amazonia at ~1°–3° N, where the Florencia, Macarena, and El Melón‐Vaupes basement highs have compartmentalised discrete depocentres during basin development. This study presents new evidence from stratigraphic, conglomerate clast count, sandstone petrography, detrital zircon U–Pb geochronology and novel apatite detrital U–Pb age trace element geochemistry analyses. The results show that the southern Eastern Cordillera (i.e., Garzon Massif) and Putumayo Basin basement highs were initially uplifted during the Late Cretaceous coeval with the Central Cordillera, most likely associated with the collision of the Caribbean Large Igneous Province (CLIP). Distinctive facies distributions and provenance changes characterise the Putumayo Basin over a ~300 km distance from south to north, in the Rumiyaco Formation and Neme Sandstone. Detrital zircon U–Pb ages record a sharp reversal from easterly derived Proterozoic to westerly sourced late Mesozoic–Cenozoic Andean zircons derived principally from the Central Cordillera. Provenance signatures of the synorogenic Eocene Pepino Formation demonstrate the continued exhumation of the Eastern Cordillera as a second‐order source area. However, the emergence of the northern intraplate highs modulated the provenance signature due to the rapid unroofing of relatively thinner marine sedimentary cover strata that overlie the Putumayo basement, in comparison to the thicker sequences of the southern basin. The provenance data and facies distributions of the Oligocene–Miocene Orito Group were more heterogeneous due to strike‐slip deformation, associated with major plate tectonic reorganisation as the Nazca Plate subducted under the South American margin.
more »
« less
Discrimination of tectonic provinces using zircon U-Pb ages from bedrock and detrital samples in the northern Andes
Abstract The northern Andes of southern Colombia contain a rich geologic history recorded by Proterozoic to Cenozoic metamorphic, igneous, and sedimentary rocks. The region plays a pivotal role in understanding the evolution of topography in northwestern South America and the development of large river systems, such as the Amazon, Orinoco, and Magdalena rivers. However, understanding of the basement framework has been hindered by challenging access, security concerns, tropical climate, and outcrop scarcity. Further, an insufficient geochronologic characterization of Andean basement complicates provenance interpretations of adjacent basins and restricts understanding of the paleogeographic evolution of southern Colombia. To address these issues, this paper presents a zircon U-Pb geochronological dataset derived for 24 bedrock samples and 19 modern river samples. The zircon U-Pb results reveal that the Eastern Cordillera of southern Colombia is underlain by basement rocks that originated in various tectonic events since ca. 1.5 Ga, including the accretion of discrete terranes. The oldest rocks, found in the Garzon Massif, are high-grade metamorphic rocks with contrasting Proterozoic protolith crystallization ages. Whereas the SW part of the massif formed during the Putumayo Orogeny (ca. 1.2–0.9 Ga), we report orthogneisses for the NE segment with protoliths formed at ca. 1.5 Ga, representing the NW continuation of the Rio Negro Jurena province of the Amazonian Craton. In contrast, crystalline rocks of the Central Cordillera primarily consist of Permian–Triassic (ca. 270–250 Ma) and Jurassic–Cretaceous (ca. 180–130 Ma) igneous rocks formed in a magmatic arc. In southernmost Colombia, the Putumayo Mountains mainly consist of Jurassic–Cretaceous (180–130 Ma) plutonic and volcanic rocks. Furthermore, we analyzed the heavy mineral abundances in modern river sands in southern Colombia (spanning 1°N–5°N) and found that key minerals such as garnet and epidote can be utilized to trace high-grade metamorphic and igneous lithologies, respectively, in the river catchments. The differentiation of basement ages for separate tectonic provinces, combined with heavy mineral abundances in modern sands, can serve as unique fingerprints in provenance analyses to trace the topographic and exhumational evolution of different Andean regions through time.
more »
« less
- Award ID(s):
- 1946700
- PAR ID:
- 10634638
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- Volume:
- 136
- Issue:
- 11-12
- ISSN:
- 0016-7606
- Page Range / eLocation ID:
- 5231 to 5248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Competing hypotheses attribute the regional loss of 1.2–1.0 Ga detrital zircon from the Cambrian Sauk Sequence in southwestern North America to differing tectonic controls on surface topography. We test three hypotheses with source‐to‐sink detrital zircon provenance analysis via tandem in situ and isotope dilution U–Pb geochronology paired with geochemical and Hf‐isotope tracers. Our data indicate that the lower‐to‐middle Sixtymile Formation in Grand Canyon was derived from ca. 1.1 Ga rocks of the Llano Uplift and the ca. 539–523 Ma Wichita igneous province, approximately 1400 km away. In contrast, new U–Pb geochronology links the upper Sixtymile and Tapeats formations to the 513–510 Ma Florida Mountains intrusive complex, southern New Mexico, and proximal 1.4 and 1.7 Ga basement approximately 650 km away. We attribute a regional provenance shift to plume–lithosphere interactions on the Iapetan margin, tectonism along ‘leaky’ intracratonic transverse fault zones and the rift‐to‐drift transition on the Cordilleran margin.more » « less
-
Abstract Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; southwestern United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposition with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this provenance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local basement uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and temporal patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrography, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth elemental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in western Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anomalously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochemistry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identification of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wanakah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin suggests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT.more » « less
-
Abstract The Willsboro–Lewis wollastonite district occurs along the margin of the 1.15-Ga Marcy anorthosite massif in the Adirondack Highlands (New York) and records mineralogical and isotopic evidence for formation in the anorthosite’s low-pressure metamorphic contact aureole. Wollastonite–garnet–pyroxene gneisses in the ~25-km-long, 1.5-km-thick skarn belt are mined for wollastonite and are intercalated with massive garnetite and pyroxene ± garnet skarns, all of which have low oxygen isotope ratios indicating circulation of heated meteoric water and relatively shallow depths above the brittle–ductile transition during their formation. Anorthosite, skarns, and country rocks were all variably deformed and recrystallized at depths of 25 to 30 km during the 1.09- to 1.02-Ga Ottawan phase, and locally altered during the 1.01- to 0.98-Ga Rigolet phase, of the Grenvillian orogeny. This study examined rare zircon in low-δ18O skarn rocks to constrain the timing of surface-derived meteoric water infiltration. Zircon was dated, and trace elements were measured by laser-ablation ICPMS, and oxygen isotopes were measured by ion microprobe, yielding a spectrum of ages and oxygen isotope ratios reflecting the polymetamorphic history of these rocks. Most samples are dominated by metamorphic zircon having Ottawan or Rigolet 207Pb/206Pb ages and are in high-temperature oxygen isotopic equilibrium with host wollastonite, garnet and/or pyroxene. Several samples contain igneous zircon with disturbed U–Pb isotope systematics, reflecting some combination of new zircon growth and recrystallization during subsequent metamorphism. Relict 1150–1140 Ma ages are preserved in some zircon cores, which are taken as the ages of igneous zircon incorporated during skarn formation or from protoliths. Some of these 1150 to 1140 Ma cores preserve the low-δ18O record of interaction with meteoric water. Ages seen in the Willsboro–Lewis skarns reproduce the span of igneous, disturbed and metamorphic ages in Adirondack anorthosite, and point to contemporaneous anorthosite emplacement, meteoric water circulation and skarn formation at ca. 1150 Ma. This result is consistent with shallow emplacement of the Marcy anorthosite massif during crustal thinning related to the collapse of the 1.19- to 1.14-Ga Shawinigan orogeny, and that granulite facies overprinting was a later tectonic event.more » « less
-
The Nutzotin basin of eastern Alaska consists of Upper Jurassic through Lower Cretaceous siliciclastic sedimentary and volcanic rocks that depositionally overlie the inboard margin of Wrangellia, an accreted oceanic plateau. We present igneous geochronologic data from volcanic rocks and detrital geochronologic and paleontological data from nonmarine sedimentary strata that provide constraints on the timing of deposition and sediment provenance. We also report geochronologic data from a dike injected into the Totschunda fault zone, which provides constraints on the timing of intra–suture zone basinal deformation. The Beaver Lake formation is an important sedimentary succession in the northwestern Cordillera because it provides an exceptionally rare stratigraphic record of the transition from marine to nonmarine depositional conditions along the inboard margin of the Insular terranes during mid-Cretaceous time. Conglomerate, volcanic-lithic sandstone, and carbonaceous mudstone/shale accumulated in fluvial channel-bar complexes and vegetated overbank areas, as evidenced by lithofacies data, the terrestrial nature of recovered kerogen and palynomorph assemblages, and terrestrial macrofossil remains of ferns and conifers. Sediment was eroded mainly from proximal sources of upper Jurassic to lower Cretaceous igneous rocks, given the dominance of detrital zircon and amphibole grains of that age, plus conglomerate with chiefly volcanic and plutonic clasts. Deposition was occurring by ca. 117 Ma and ceased by ca. 98 Ma, judging from palynomorphs, the youngest detrital ages, and ages of crosscutting intrusions and underlying lavas of the Chisana Formation. Following deposition, the basin fill was deformed, partly eroded, and displaced laterally by dextral displacement along the Totschunda fault, which bisects the Nutzotin basin. The Totschunda fault initiated by ca. 114 Ma, as constrained by the injection of an alkali feldspar syenite dike into the Totschunda fault zone. These results support previous interpretations that upper Jurassic to lower Cretaceous strata in the Nutzotin basin accumulated along the inboard margin of Wrangellia in a marine basin that was deformed during mid-Cretaceous time. The shift to terrestrial sedimentation overlapped with crustal-scale intrabasinal deformation of Wrangellia, based on previous studies along the Lost Creek fault and our new data from the Totschunda fault. Together, the geologic evidence for shortening and terrestrial deposition is interpreted to reflect accretion/suturing of the Insular terranes against inboard terranes. Our results also constrain the age of previously reported dinosaur footprints to ca. 117 Ma to ca. 98 Ma, which represent the only dinosaur fossils reported from eastern Alaska.more » « less
An official website of the United States government

