Abstract We present an investigation of the azimuthal bimodality of the wind-wave spectrum for waves shorter than the dominant scale comparing numerical model solutions of developing waves from idealized experiments using WAVEWATCH III (WW3). The wave solutions were forced with the “exact” Webb–Resio–Tracy (WRT) nonlinear energy fluxes and the direct interaction approximation (DIA) with three different combinations of wind input and breaking dissipation parameterizations. The WRT gives larger azimuthal bimodal amplitudes compared to the DIA regardless of wind input/dissipation. The widely used wind input/dissipation parameterizations (i.e., ST4 and ST6) generally give narrow directional distributions with relatively small bimodal amplitudes and lobe separations compared to field measurements. These biases are significantly improved by the breaking dissipation of Romero (R2019). Moreover, the ratio of the resolved cross- to downwind mean square slope is significantly lower for ST4 and ST6 compared to R2019. The overlap integral relevant for the prediction of microseisms is several orders of magnitude smaller for ST4 and ST6 compared to R2019, which nearly agrees with a semiempirical model. Significance StatementSpectral gravity wave models generally cannot accurately predict the directional distribution which impacts their ability to predict the resolved down- and crosswind mean square slopes and the generation of microseisms. Our analysis shows that a directionally narrow spectral energy dissipation, accounting for long-wave–short-wave modulation, can significantly improve the directional distribution of the wind-wave spectrum by coupling to the nonlinear energy fluxes due to wave–wave interactions, which has important implications for improved predictions of the mean square slopes and the generation of microseisms.
more »
« less
This content will become publicly available on July 11, 2026
Observations of Wave‐Breaking Direction and Energy Spread
Surface waves are important for remote sensing, air–sea exchange, and underwater acoustics. The short gravity wave spectrum is azimuthally broad and bimodal. However, widely used wave models fail to reproduce the degree of observed spreading and azimuthal bimodality. Recent studies show that an azimuthally narrow spectral breaking dissipation due to long‐wave short‐wave modulation significantly improves model performance, highlighting the importance of better understanding the directionality of breaking kinematics. We utilized visible stereo imagery to investigate the directional wave‐breaking kinematics relative to the energy spectrum under aligned and misaligned winds and dominant waves. The results show that the statistical distribution of wave‐breaking kinematics closely aligns with the direction of the dominant waves and is azimuthally unimodal and narrower than the bimodal energy spectrum. These findings confirm the importance of exploring the directionality of breaking to improve our understanding of the spectral energy balance and spectral wave models within the short‐gravity range.
more »
« less
- PAR ID:
- 10616312
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 14
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- e2025GL116452
- Subject(s) / Keyword(s):
- wave breaking energy dissipation wave spectrum observations ocean surface waves directional spreading
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The influence of gravity waves generated by surface stress and by topography on the atmospheric kinetic energy (KE) spectrum is examined using idealized simulations of a cyclone growing in baroclinically unstable shear flow. Even in the absence of topography, surface stress greatly enhances the generation of gravity waves in the vicinity of the cold front, and vertical energy fluxes associated with these waves produce a pronounced shallowing of the KE spectrum at mesoscale wavelengths relative to the corresponding free-slip case. The impact of a single isolated ridge is, however, much more pronounced than that of surface stress. When the mountain waves are well developed, they produce a wavenumber to the −5/3 spectrum in the lower stratosphere over a broad range of mesoscale wavelengths. In the midtroposphere, a smaller range of wavelengths also exhibits a −5/3 spectrum. When the mountain is 500 m high, the waves do not break, and their KE is entirely associated with the divergent component of the velocity field, which is almost constant with height. When the mountain is 2 km high, wave breaking creates potential vorticity, and the rotational component of the KE spectrum is also strongly energized by the waves. Analysis of the spectral KE budgets shows that the actual spectrum is the result of continually shifting balances of direct forcing from vertical energy flux divergence, conservative advective transport, and buoyancy flux. Nevertheless, there is one interesting example where the −5/3-sloped lower-stratospheric energy spectrum appears to be associated with a gravity-wave-induced upscale inertial cascade.more » « less
-
Abstract Superpressure balloon data of unprecedented coverage from Loon LLC is used to investigate the seasonal and latitudinal variability of lower stratospheric gravity waves over the entire intrinsic frequency spectrum. We show that seasonal variability in both gravity wave amplitudes and spectral slopes exist for a wide range of intrinsic frequencies and provide estimates of spectral slopes in five latitudinal regions for all four seasons, in five different frequency windows. The spectral slopes can be used to infer gravity wave amplitudes of intrinsic frequencies as high as 70 cycles/day from gravity waves resolved in model and reanalysis data. We also show that a robust relationship between the phase of the quasi‐biennial oscillation and gravity wave amplitudes exists for intrinsic frequencies as high as the buoyancy frequency. These are the first estimates of seasonal and latitudinal variability of gravity wave spectral slopes and high‐frequency amplitudes and constitute a significant step toward obtaining observationally constrained gravity wave parameterizations in climate models.more » « less
-
We study the spectral energy transfer due to wave–triad interactions in the Garrett–Munk spectrum of internal gravity waves based on a numerical evaluation of the collision integral in the wave kinetic equation. Our numerical evaluation builds on the reduction of the collision integral on the resonant manifold for a horizontally isotropic spectrum. We evaluate directly the downscale energy flux available for ocean mixing, whose value is in close agreement with the finescale parameterization. We further decompose the energy transfer into contributions from different mechanisms, including local interactions and three types of non-local interactions, namely parametric subharmonic instability, elastic scattering (ES) and induced diffusion (ID). Through analysis on the role of each mechanism, we resolve two long-standing paradoxes regarding the mechanism for forward cascade in frequency and zero ID flux for the GM76 spectrum. In addition, our analysis estimates the contribution of each mechanism to the energy transfer in each spectral direction, and reveals new understanding of the importance of local interactions and ES in the energy transfer.more » « less
-
Abstract Oceanic mixing, mostly driven by the breaking of internal waves at small scales in the ocean interior, is of major importance for ocean circulation and the ocean response to future climate scenarios. Understanding how internal waves transfer their energy to smaller scales from their generation to their dissipation is therefore an important step for improving the representation of ocean mixing in climate models. In this study, the processes leading to cross-scale energy fluxes in the internal wave field are quantified using an original decomposition approach in a realistic numerical simulation of the California Current. We quantify the relative contribution of eddy–internal wave interactions and wave–wave interactions to these fluxes and show that eddy–internal wave interactions are more efficient than wave–wave interactions in the formation of the internal wave continuum spectrum. Carrying out twin numerical simulations, where we successively activate or deactivate one of the main internal wave forcing, we also show that eddy–near-inertial internal wave interactions are more efficient in the cross-scale energy transfer than eddy–tidal internal wave interactions. This results in the dissipation being dominated by the near-inertial internal waves over tidal internal waves. A companion study focuses on the role of stimulated cascade on the energy and enstrophy fluxes.more » « less
An official website of the United States government
