A<sc>bstract</sc> Results are presented from a search for the Higgs boson decay H→Zγ, where Z→ ℓ+ℓ−withℓ= e or μ. The search is performed using a sample of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb−1. Events are assigned to mutually exclusive categories, which exploit differences in both event topology and kinematics of distinct Higgs production mechanisms to enhance signal sensitivity. The signal strengthμ, defined as the product of the cross section and the branching fraction$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right] $$ relative to the standard model prediction, is extracted from a simultaneous fit to theℓ+ℓ−γ invariant mass distributions in all categories and is measured to beμ= 2.4 ± 0.9 for a Higgs boson mass of 125.38 GeV. The statistical significance of the observed excess of events is 2.7 standard deviations. This measurement corresponds to$$ \left[\sigma \left(\textrm{pp}\to \textrm{H}\right)\mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)\right]=0.21\pm 0.08 $$ pb. The observed (expected) upper limit at 95% confidence level onμis 4.1 (1.8), where the expected limit is calculated under the background-only hypothesis. The ratio of branching fractions$$ \mathcal{B}\left(\textrm{H}\to \textrm{Z}\upgamma \right)/\mathcal{B}\left(\textrm{H}\to \upgamma \upgamma \right) $$ is measured to be$$ {1.5}_{-0.6}^{+0.7} $$ , which agrees with the standard model prediction of 0.69 ± 0.04 at the 1.5 standard deviation level. 
                        more » 
                        « less   
                    
                            
                            Probing bottom-associated production of a TeV scale scalar decaying to a top quark and dark matter at the LHC
                        
                    
    
            A<sc>bstract</sc> A minimal non-thermal dark matter model that can explain both the existence of dark matter and the baryon asymmetry in the universe is studied. It requires two color-triplet, iso-singlet scalars with$$ \mathcal{O}\left(\textrm{TeV}\right) $$ masses and a singlet Majorana fermion with a mass of$$ \mathcal{O}\left(\textrm{GeV}\right) $$ . The fermion becomes stable and can play the role of the dark matter candidate. We consider the fermion to interact with a top quark via the exchange of QCD-charged scalar fields coupled dominantly to third generation fermions. The signature of a single top quark production associated with a bottom quark and large missing transverse momentum opens up the possibility to search for this type of model at the LHC in a way complementary to existing monotop searches. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10616500
- Editor(s):
- JHEP
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Edition / Version:
- 1
- Volume:
- 2024
- Issue:
- 9
- ISSN:
- 1029-8479
- Subject(s) / Keyword(s):
- b-top-DM
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> A measurement of the top quark pair ($$ \textrm{t}\overline{\textrm{t}} $$ ) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb−1. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as originating from a b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is$$ 62.5\pm 1.6{\left(\textrm{stat}\right)}_{-2.5}^{+2.6}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) $$ pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 ± 1.5 (stat) ± 2.4 (syst) ± 1.2 (lumi) pb, to be compared with the standard model prediction of$$ {69.5}_{-3.7}^{+3.5} $$ pb at next-to-next-to-leading order in perturbative quantum chromodynamics.more » « less
- 
            A<sc>bstract</sc> A search for the fully reconstructed$$ {B}_s^0 $$ → μ+μ−γdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV corresponding to an integrated luminosity of 5.4 fb−1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$ at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals.more » « less
- 
            A<sc>bstract</sc> Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb−1. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant$$ \textrm{t}\overline{\textrm{t}} $$ background. A cross section of$$ 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) $$ pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.more » « less
- 
            A<sc>bstract</sc> The polarization ofτleptons is measured using leptonic and hadronicτlepton decays in Z →τ+τ−events in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV recorded by CMS at the CERN LHC with an integrated luminosity of 36.3 fb−1. The measuredτ−lepton polarization at the Z boson mass pole is$$ {\mathcal{P}}_{\tau}\left(\textrm{Z}\right) $$ = −0.144 ± 0.006 (stat) ± 0.014 (syst) = −0.144 ± 0.015, in good agreement with the measurement of theτlepton asymmetry parameter ofAτ= 0.1439 ± 0.0043 =$$ -{\mathcal{P}}_{\tau}\left(\textrm{Z}\right) $$ at LEP. Theτlepton polarization depends on the ratio of the vector to axial-vector couplings of theτleptons in the neutral current expression, and thus on the effective weak mixing angle sin2$$ {\theta}_{\textrm{W}}^{\textrm{eff}} $$ , independently of the Z boson production mechanism. The obtained value sin2$$ {\theta}_{\textrm{W}}^{\textrm{eff}} $$ = 0.2319 ± 0.0008(stat) ± 0.0018(syst) = 0.2319 ± 0.0019 is in good agreement with measurements ate+e−colliders.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    