skip to main content


Search for: All records

Award ID contains: 1945366

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Leptoquarks ($$\textrm{LQ}$$LQs) are hypothetical particles that appear in various extensions of the Standard Model (SM), that can explain observed differences between SM theory predictions and experimental results. The production of these particles has been widely studied at various experiments, most recently at the Large Hadron Collider (LHC), and stringent bounds have been placed on their masses and couplings, assuming the simplest beyond-SM (BSM) hypotheses. However, the limits are significantly weaker for$$\textrm{LQ}$$LQmodels with family non-universal couplings containing enhanced couplings to third-generation fermions. We present a new study on the production of a$$\textrm{LQ}$$LQat the LHC, with preferential couplings to third-generation fermions, considering proton-proton collisions at$$\sqrt{s} = 13 \, \textrm{TeV}$$s=13TeVand$$\sqrt{s} = 13.6 \, \textrm{TeV}$$s=13.6TeV. Such a hypothesis is well motivated theoretically and it can explain the recent anomalies in the precision measurements of$$\textrm{B}$$B-meson decay rates, specifically the$$R_{D^{(*)}}$$RD()ratios. Under a simplified model where the$$\textrm{LQ}$$LQmasses and couplings are free parameters, we focus on cases where the$$\textrm{LQ}$$LQdecays to a$$\tau $$τlepton and a$$\textrm{b}$$bquark, and study how the results are affected by different assumptions about chiral currents and interference effects with other BSM processes with the same final states, such as diagrams with a heavy vector boson,$$\textrm{Z}^{\prime }$$Z. The analysis is performed using machine learning techniques, resulting in an increased discovery reach at the LHC, allowing us to probe new physics phase space which addresses the$$\textrm{B}$$B-meson anomalies, for$$\textrm{LQ}$$LQmasses up to$$5.00\, \textrm{TeV}$$5.00TeV, for the high luminosity LHC scenario.

     
    more » « less
  2. Abstract

    The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
    Abstract The rate for Higgs ( $${\mathrm{H}} $$ H ) bosons production in association with either one ( $${\mathrm{t}} {\mathrm{H}} $$ t H ) or two ( $${\mathrm{t}} {{\overline{{{\mathrm{t}}}}}} {\mathrm{H}} $$ t t ¯ H ) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton–proton collisions recorded at a center-of-mass energy of $$13\,\text {TeV} $$ 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 $$\,\text {fb}^{-1}$$ fb - 1 . The analysis is aimed at events that contain $${\mathrm{H}} \rightarrow {\mathrm{W}} {\mathrm{W}} $$ H → W W , $${\mathrm{H}} \rightarrow {\uptau } {\uptau } $$ H → τ τ , or $${\mathrm{H}} \rightarrow {\mathrm{Z}} {\mathrm{Z}} $$ H → Z Z decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among $${\mathrm{t}} {\mathrm{H}} $$ t H , $${\mathrm{t}} {{\overline{{{\mathrm{t}}}}}} {\mathrm{H}} $$ t t ¯ H , and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the $${\mathrm{t}} {{\overline{{{\mathrm{t}}}}}} {\mathrm{H}} $$ t t ¯ H and $${\mathrm{t}} {\mathrm{H}} $$ t H signals correspond to $$0.92 \pm 0.19\,\text {(stat)} ^{+0.17}_{-0.13}\,\text {(syst)} $$ 0.92 ± 0.19 (stat) - 0.13 + 0.17 (syst) and $$5.7 \pm 2.7\,\text {(stat)} \pm 3.0\,\text {(syst)} $$ 5.7 ± 2.7 (stat) ± 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for $${\mathrm{t}} {{\overline{{{\mathrm{t}}}}}} {\mathrm{H}} $$ t t ¯ H , and to 1.4 (0.3) for $${\mathrm{t}} {\mathrm{H}} $$ t H production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling $$y_{{\mathrm{t}}}$$ y t of the Higgs boson to the top quark divided by its SM expectation, $$\kappa _{{\mathrm{t}}}=y_{{\mathrm{t}}}/y_{{\mathrm{t}}}^{\mathrm {SM}}$$ κ t = y t / y t SM , is constrained to be within $$-0.9< \kappa _{{\mathrm{t}}}< -0.7$$ - 0.9 < κ t < - 0.7 or $$0.7< \kappa _{{\mathrm{t}}}< 1.1$$ 0.7 < κ t < 1.1 , at 95% confidence level. This result is the most sensitive measurement of the $${\mathrm{t}} {{\overline{{{\mathrm{t}}}}}} {\mathrm{H}} $$ t t ¯ H production rate to date. 
    more » « less