Abstract Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compare the results from different studies. The objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.Approach. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases of prostate patients were included. The accuracy of the DL-calculated doses was measured using gamma analysis, and the calculation efficiency was evaluated by inference time.Results. All the studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet had the shortest inference but relatively lower accuracy, and the others showed average performance. Therefore, the best-performing model would depend on the specific clinical needs and available computational resources.Significance. The feasibility of using common UNet-based models for MR-Linac-based dose calculations has been explored in this study. By using the same model input type, patient training data, and computing environment, a fair assessment of the models’ performance was present. 
                        more » 
                        « less   
                    This content will become publicly available on February 11, 2026
                            
                            Exploring spatial dose information in the parotid gland for xerostomia prediction and local dose patterns in head and neck cancer radiotherapy
                        
                    
    
            Abstract Purpose. To investigate the relationship between spatial parotid dose and the risk of xerostomia in patients undergoing head-and-neck cancer radiotherapy, using machine learning (ML) methods.Methods. Prior to conducting voxel-based ML analysis of the spatial dose, two steps were taken: (1) The parotid dose was standardized through deformable image registration to a reference patient; (2) Bilateral parotid doses were regrouped into contralateral and ipsilateral portions depending on their proximity to the gross tumor target. Individual dose voxels were input into six commonly used ML models, which were tuned with ten-fold cross validation: random forest (RF), ridge regression (RR), support vector machine (SVM), extra trees (ET), k-nearest neighbor (kNN), and naïve Bayes (NB). Binary endpoints from 240 patients were used for model training and validation: 0 (N = 119) for xerostomia grades 0 or 1, and 1 (N = 121) for grades 2 or higher. Model performance was evaluated using multiple metrics, including accuracy, F1score, areas under the receiver operating characteristics curves (auROC), and area under the precision–recall curves (auPRC). Dose voxel importance was assessed to identify local dose patterns associated with xerostomia risk.Results. Four models, including RF, SVM, ET, and NB, yielded average auROCs and auPRCs greater than 0.60 from ten-fold cross-validation on the training data, except for a lower auROC from NB. The first three models, along with kNN, demonstrated higher accuracy and F1scores. A bootstrapping analysis confirmed test uncertainty. Voxel importance analysis from kNN indicated that the posterior portion of the ipsilateral gland was more predictive of xerostomia, but no clear patterns were identified from the other models.Conclusion. Voxel doses as predictors of xerostomia were confirmed with some ML classifiers, but no clear regional patterns could be established among these classifiers, except kNN. Further research with a larger patient dataset is needed to identify conclusive patterns. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2324052
- PAR ID:
- 10616531
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Biomedical Physics & Engineering Express
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2057-1976
- Page Range / eLocation ID:
- 025030
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background and Objectives: Sepsis is a leading cause of mortality in intensive care units (ICUs). The development of a robust prognostic model utilizing patients’ clinical data could significantly enhance clinicians’ ability to make informed treatment decisions, potentially improving outcomes for septic patients. This study aims to create a novel machine-learning framework for constructing prognostic tools capable of predicting patient survival or mortality outcome. Methods: A novel dataset is created using concatenated triples of static data, temporal data, and clinical outcomes to expand data size. This structured input trains five machine learning classifiers (KNN, Logistic Regression, SVM, RF, and XGBoost) with advanced feature engineering. Models are evaluated on an independent cohort using AUROC and a new metric, 𝛾, which incorporates the F1 score, to assess discriminative power and generalizability. Results: We developed five prognostic models using the concatenated triple dataset with 10 dynamic features from patient medical records. Our analysis shows that the Extreme Gradient Boosting (XGBoost) model (AUROC = 0.777, F1 score = 0.694) and the Random Forest (RF) model (AUROC = 0.769, F1 score = 0.647), when paired with an ensemble under-sampling strategy, outperform other models. The RF model improves AUROC by 6.66% and reduces overfitting by 54.96%, while the XGBoost model shows a 0.52% increase in AUROC and a 77.72% reduction in overfitting. These results highlight our framework’s ability to enhance predictive accuracy and generalizability, particularly in sepsis prognosis. Conclusion: This study presents a novel modeling framework for predicting treatment outcomes in septic patients, designed for small, imbalanced, and high-dimensional datasets. By using temporal feature encoding, advanced sampling, and dimension reduction techniques, our approach enhances standard classifier performance. The resulting models show improved accuracy with limited data, offering valuable prognostic tools for sepsis management. This framework demonstrates the potential of machine learning in small medical datasets.more » « less
- 
            Abstract Objective . Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic compromise between the calculation accuracy and efficiency of the traditional dose calculation algorithms. However, current DL-based engines typically possess high computational complexity and require powerful computing devices. Therefore, to mitigate their computational burdens and broaden their applicability to a clinical setting where resource-limited devices are available, we proposed a compact dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speed with high accuracy for prostate Volumetric Modulated Arc Therapy (VMAT). Approach . The KD framework contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The student receives knowledge transferred from the teacher for better generalization. The trained student serves as the final engine for dose calculation. The model input is patient computed tomography and VMAT dose in water, and the output is DL-calculated patient dose. The ground-truth \dose was computed by the Monte Carlo module of the Monaco treatment planning system. Twenty and ten prostate cases were included for model training and assessment, respectively. The model’s performance (teacher/student/student-only) was evaluated by Gamma analysis and inference efficiency. Main results . The dosimetric comparisons (input/DL-calculated/ground-truth doses) suggest that the proposed engine can effectively convert low-accuracy doses in water to high-accuracy patient doses. The Gamma passing rate (2%/2 mm, 10% threshold) between the DL-calculated and ground-truth doses was 98.64 ± 0.62% (teacher), 98.13 ± 0.76% (student), and 96.95 ± 1.02% (student-only). The inference time was 16 milliseconds (teacher) and 11 milliseconds (student/student-only) using a graphics processing unit device, while it was 936 milliseconds (teacher) and 374 milliseconds (student/student-only) using a central processing unit device. Significance . With the KD framework, a compact dose engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computational burdens and computing device requirements, and thus such an engine can be more clinically applicable.more » « less
- 
            null (Ed.)In recent years, there have been rapid improvements in both remote sensing methods and satellite image availability that have the potential to massively improve burn severity assessments of the Alaskan boreal forest. In this study, we utilized recent pre- and post-fire Sentinel-2 satellite imagery of the 2019 Nugget Creek and Shovel Creek burn scars located in Interior Alaska to both assess burn severity across the burn scars and test the effectiveness of several remote sensing methods for generating accurate map products: Normalized Difference Vegetation Index (NDVI), Normalized Burn Ratio (NBR), and Random Forest (RF) and Support Vector Machine (SVM) supervised classification. We used 52 Composite Burn Index (CBI) plots from the Shovel Creek burn scar and 28 from the Nugget Creek burn scar for training classifiers and product validation. For the Shovel Creek burn scar, the RF and SVM machine learning (ML) classification methods outperformed the traditional spectral indices that use linear regression to separate burn severity classes (RF and SVM accuracy, 83.33%, versus NBR accuracy, 73.08%). However, for the Nugget Creek burn scar, the NDVI product (accuracy: 96%) outperformed the other indices and ML classifiers. In this study, we demonstrated that when sufficient ground truth data is available, the ML classifiers can be very effective for reliable mapping of burn severity in the Alaskan boreal forest. Since the performance of ML classifiers are dependent on the quantity of ground truth data, when sufficient ground truth data is available, the ML classification methods would be better at assessing burn severity, whereas with limited ground truth data the traditional spectral indices would be better suited. We also looked at the relationship between burn severity, fuel type, and topography (aspect and slope) and found that the relationship is site-dependent.more » « less
- 
            Background: At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. Objective: This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. Methods: A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. Results: Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. Conclusions: This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
