skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulation of late Pleistocene ENSO strength by the tropical Pacific thermocline
Abstract The El Niño Southern Oscillation (ENSO) is highly dependent on coupled atmosphere-ocean interactions and feedbacks, suggesting a tight relationship between ENSO strength and background climate conditions. However, the extent to which background climate state determines ENSO behavior remains in question. Here we present reconstructions of total variability and El Niño amplitude from individual foraminifera distributions at discrete time intervals over the past ~285,000 years across varying atmospheric CO2levels, global ice volume and sea level, and orbital insolation forcing. Our results show a strong correlation between eastern tropical Pacific Ocean mixed-layer thickness and both El Niño amplitude and central Pacific variability. This ENSO-thermocline relationship implicates upwelling feedbacks as the major factor controlling ENSO strength on millennial time scales. The primacy of the upwelling feedback in shaping ENSO behavior across many different background states suggests accurate quantification and modeling of this feedback is essential for predicting ENSO’s behavior under future climate conditions.  more » « less
Award ID(s):
1401649
PAR ID:
10616606
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Natural computing series
Volume:
11
Issue:
1
ISSN:
2627-6461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract El Niño–Southern Oscillation (ENSO) dominates interannual climate variability; thus, understanding its response to climate forcing is critical. ENSO's sensitivity to changing insolation is poorly understood, due to contrasting interpretations of Holocene proxy records. Some records show dampened ENSO during the early to mid‐Holocene, consistent with insolation forcing of ENSO amplitude, but other records emphasize decadal‐centennial fluctuations in ENSO strength, with no clear trend. To clarify Holocene ENSO behavior, we collected proxy data spanning the last ~12 kyr and find relatively low El Niño amplitude during the early to mid‐Holocene. Our data, together with published work, indicate both a long‐term trend in ENSO strength due to June insolation forcing and high‐amplitude decadal‐centennial fluctuations; both behaviors are shown in models. The best supported mechanism for insolation‐driven dampening of ENSO is weakening of the upwelling feedback by insolation‐forced warming/deepening of thermocline source waters. Elucidating the thermocline's role will help predict future ENSO change. 
    more » « less
  2. The El Niño—Southern Oscillation (ENSO) is an important mode of tropical Pacific atmosphere‐ocean variability that drives teleconnections with weather and climate globally. However, prior studies using state‐of‐the‐art climate models lack consensus regarding future ENSO projections and are often impacted by tropical Pacific sea‐surface temperature (SST) biases. We used 173 simulations from 29 climate models participating in the Coupled Model Intercomparison Project, version 6 (CMIP6) to analyze model biases and future ENSO projections. We analyzed two ENSO indices, namely the ENSO Longitude Index (ELI), which measures zonal shifts in tropical Pacific deep convection and accounts for changes in background SST, and the Niño 3.4 index, which measures SST anomalies in the central‐eastern equatorial Pacific. We found that the warm eastern tropical‐subtropical Pacific SST bias typical of previous generations of climate models persists into many of the CMIP6 models. Future projections of ENSO shift toward more El Niño‐like conditions based on ELI in 48% of simulations and 55% of models, in association with a future weakening of the zonal equatorial Pacific SST gradient. On the other hand, none of the models project a significant shift toward La Niña‐like conditions. The standard deviation of the Niño 3.4 index indicates a lack of consensus on whether an increase or decrease in ENSO variability is expected in the future. Finally, we found a possible relationship between historical SST and low‐level cloud cover biases in the ENSO region and future changes in ELI; however, this result may be impacted by limitations in data availability. 
    more » « less
  3. null (Ed.)
    Abstract The El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood. Analysing both reanalyses and climate models, we here show that simulated ENSO asymmetry is largely proportional to subsurface nonlinear dynamical heating (NDH) along the equatorial Pacific thermocline. Most climate models suffer from too-weak NDH and too-weak linear dynamical ocean-atmosphere coupling. Nevertheless, a sizeable subset (about 1/3) having relatively realistic NDH shows that El Niño-likeness of the equatorial-Pacific warming pattern is linearly related to ENSO amplitude change in response to greenhouse warming. Therefore, better simulating the dynamics of ENSO asymmetry potentially reduces uncertainty in future projections. 
    more » « less
  4. Abstract Understanding El Niño-Southern Oscillation (ENSO) response to past climate forcings is hindered by conflicting paleoclimate evidence. Records from the eastern Pacific show an intensification of ENSO variability from early to late Holocene, while records from the central Pacific show highly variable ENSO throughout the Holocene without an obvious relation to insolation forcing, which is the main climate driver during this interval. Here, we show via climate model simulations that conflicting Holocene records can be reconciled by considering changes in the relative frequency of the three preferred spatial patterns in which El Niño events occur (Eastern Pacific, Central Pacific, and Coastal) and in the strength of their hydroclimatic impacts. The relationship between ENSO diversity and variance is not only crucial for interpreting paleo-ENSO records and understanding ENSO response to external forcings but can also be used across climate model simulations to help evaluate the realism of ENSO projections in a changing climate. 
    more » « less
  5. Abstract The basic dynamics of the spatiotemporal diversity for El Niño–Southern Oscillation (ENSO) has been the subject of extensive research and, while several hypotheses have been proposed, remains elusive. One promising line of studies suggests that the observed eastern Pacific (EP) and central Pacific (CP) ENSO may originate from two coexisting leading ENSO modes. We show that the coexistence of unstable EP-like and CP-like modes in these studies arises from contaminated linear stability analysis due to unnoticed numerical scheme caveats. In this two-part study, we further investigate the dynamics of ENSO diversity within a Cane–Zebiak-type model. We first revisit the linear stability issue to demonstrate that only one ENSO-like linear leading mode exists under realistic climate conditions. This single leading ENSO mode can be linked to either a coupled recharge-oscillator (RO) mode favored by the thermocline feedback or a wave-oscillator (WO) mode favored by the zonal advective feedback at the weak air–sea coupling end. Strong competition between the RO and WO modes for their prominence in shaping this ENSO mode into a generalized RO mode makes it sensitive to moderate changes in these two key feedbacks. Modulations of climate conditions yield corresponding modulations in spatial pattern, amplitude, and period associated with this ENSO mode. However, the ENSO behavior undergoing this linear climate condition modulations alone does not seem consistent with the observed ENSO diversity, suggesting the inadequacy of linear dynamics in explaining ENSO diversity. A nonlinear mechanism for ENSO diversity will be proposed and discussed in Part II. 
    more » « less