As a paradigmatic model of active fluids, bacterial suspensions show intriguing rheological responses drastically different from their counterpart colloidal suspensions. Although the flow of bulk bacterial suspensions has been extensively studied, the rheology of bacterial suspensions under confinement has not been experimentally explored. Here, using a microfluidic viscometer, we systematically measure the rheology of dilute Escherichia coli suspensions under different degrees of confinement. Our study reveals a strong confinement effect: the viscosity of bacterial suspensions decreases substantially when the confinement scale is comparable or smaller than the run length of bacteria. Moreover, we also investigate the microscopic dynamics of bacterial suspensions including velocity profiles, bacterial density distributions, and single bacterial dynamics in shear flows. These measurements allow us to construct a simple heuristic model based on the boundary layer of upstream swimming bacteria near confining walls, which qualitatively explains our experimental observations. Our study sheds light on the influence of the boundary layer of collective bacterial motions on the flow of confined bacterial suspensions. Our results provide a benchmark for testing different rheological models of active fluids and are useful for understanding the transport of microorganisms in confined geometries.
more »
« less
Turbulent-like flows in quasi two-dimensional dense suspensions of motile colloids
Dense suspensions of Quincke random walkers exhibit turbulent-like flows mimicking those of bacterial suspensions.
more »
« less
- Award ID(s):
- 2004926
- PAR ID:
- 10616663
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Soft Matter
- ISSN:
- 1744-683X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Suspensions of soft and highly deformable microgels can be concentrated far more than suspensions of hard colloids, leading to their unusual mechanical properties. Microgels can accommodate compression in suspensions in a variety of ways such as interpenetration, deformation, and shrinking. Previous experiments have offered insightful, but somewhat conflicting, accounts of the behavior of individual microgels in compressed suspensions. We develop a mesoscale computational model to probe the behavior of compressed suspensions consisting of microgels with different architectures at a variety of packing fractions and solvent conditions. We find that microgels predominantly change shape and mildly shrink above random close packing. Interpenetration is only appreciable above space filling, remaining small relative to the mean distance between cross-links. At even higher packing fractions, microgels solely shrink. Remarkably, irrespective of the single-microgel properties, and whether the suspension concentration is changed via changing the particle number density or the swelling state of the particles, which can even result in colloidal gelation, the mechanics of the suspension can be quantified in terms of the single-microgel bulk modulus, which thus emerges as the correct mechanical measure for these type of soft-colloidal suspensions. Our results rationalize the many and varied experimental results, providing insights into the relative importance of effects defining the mechanics of suspensions comprising soft particles.more » « less
-
Confined flows of particles can lead to clogging, and therefore failure, of various fluidic systems across many applications. As a result, design guidelines need to be developed to ensure that clogging is prevented or at least delayed. In this Letter, we investigate the influence of the angle of reduction in the cross section of the channel on the bridging of semidilute and dense non-Brownian suspensions of spherical particles. We observe a decrease of the clogging probability with the reduction of the constriction angle. This effect is more pronounced for dense suspensions close to the maximum packing fraction where particles are in contact in contrast to semidilute suspensions. We rationalize this difference in terms of arch selection. We describe the role of the constriction angle and the flow profile, providing insights into the distinct behavior of semidilute and dense suspensions.more » « less
-
Drying of bacterial suspensions is frequently encountered in a plethora of natural and engineering processes. However, the evaporation-driven mechanical instabilities of dense consolidating bacterial suspensions have not been explored heretofore. Here, we report the formation of two different crack patterns of drying suspensions of Escherichia coli ( E. coli ) with distinct motile behaviors. Circular cracks are observed for wild-type E. coli with active swimming, whereas spiral-like cracks form for immotile bacteria. Using the elastic fracture mechanics and the poroelastic theory, we show that the formation of the circular cracks is determined by the tensile nature of the radial drying stress once the cracks are initiated by the local order structure of bacteria due to their collective swimming. Our study demonstrates the link between the microscopic swimming behaviors of individual bacteria and the mechanical instabilities and macroscopic pattern formation of drying bacterial films. The results shed light on the dynamics of active matter in a drying process and provide useful information for understanding various biological processes associated with drying bacterial suspensions.more » « less
-
We report the effect of particle surface roughness on creep deformation and subsequent strain recovery in dense colloidal suspensions. The suspensions are composed of hard-spherelike poly(methyl methacrylate) smooth (S) and rough (R) colloids with particle volume fractions ϕS = 0.64 ± 0.01 and ϕR = 0.56 ± 0.01, corresponding to a distance of 3.0% and 3.4% based on their jamming volume fractions (ϕJS=0.66±0.01, ϕJR=0.58±0.01). The suspensions are subject to a range of shear stresses (0.01–0.07 Pa) above and below the yield stress values of the two suspensions (σyS=0.035Pa, σyR=0.02Pa). During creep, suspensions of rough colloids exhibit four to five times higher strain deformation compared to smooth colloids, irrespective of the applied stress. The interlocking of surface asperities in rough colloids is likely to generate a heterogeneous microstructure, favoring dynamic particle activity and percolation of strain heterogeneities, therefore resulting in higher magnitude of strain deformation and an earlier onset of steady flow. Strain recovery after the cessation of stress reveals a nonmonotonic recoverable strain for rough colloids, where the peak recoverable strain is observed near the yield stress, followed by a steep decline with increasing stress. This type of response suggests that frictional constraints between geometrically frustrated interlocking contacts can serve as particle bonds capable of higher elastic recovery but only near the yield stress. Understanding how particle roughness affects macroscopic creep and recovery is useful in designing yield stress fluids for additive manufacturing and product formulations.more » « less
An official website of the United States government

