Abstract We investigate the evolution of olivine crystal preferred orientation (CPO) and its effect on local shear wave splitting (SWS) in the mantle wedge of oblique subduction zones. Based on model‐predicted 3‐D mantle wedge flow fields, we compute the A‐type and E‐type olivine CPO distribution for a range of subduction obliquity. The results show that the seismically fast axis does not necessarily align with the flow direction. To model the local SWS parameter distribution for oblique subduction zones, we apply a full range of initial polarization to multilayer models that approximate the model‐predicted CPO distributions. These models result in a bimodal SWS parameter distribution, which relaxes as subduction obliquity increases. Unlike non‐oblique subduction models, these models indicate considerable variations in the SWS parameters with subduction obliquity and initial polarization and also among the forearc, arc, and backarc regions. Because of this variability, a single SWS measurement cannot constrain the CPO distribution, and shear waves with a range of initial polarization are required to interpret the SWS parameters in oblique subduction zones. Our results indicate that 3‐D mantle wedge flow due to oblique subduction cannot explain commonly observed margin‐parallel fast direction in the forearc region but can explain margin‐normal fast directions that are observed in the arc and backarc regions of oblique subduction zones.
more »
« less
Shear‐Wave Splitting in the Mantle Wedge: Role of Elastic Tensor Symmetry of Olivine Aggregates
Abstract Using a 3‐D mantle wedge flow field for a generic oblique subduction system, we calculate elastic tensors of mineral aggregates in the mantle wedge for A‐, B‐, C‐, and E‐type olivine crystal preferred orientations (CPO) and apply the calculated elastic tensor in the forward calculation of shear‐wave splitting (SWS) through the mantle wedge. We find that the hexagonal approximation of the full tensor does not affect the SWS parameters (the fast direction and the delay time) significantly for all CPO types except that the delay time for C‐type CPO becomes shorter. Additionally, we find that despite the 3‐D mantle flow field that results from oblique subduction, the fast direction is margin‐normal for A‐, C‐ and E‐type CPOs and margin‐parallel for B‐type CPO.
more »
« less
- Award ID(s):
- 1620604
- PAR ID:
- 10616671
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Using numerical models, we compute the evolution of the mantle flow field and the crystal preferred orientation (CPO) of mineral aggregates in the mantle wedge of generic subduction systems from their nascent to mature stage and investigate shear wave splitting (SWS) through the forearc mantle wedge corner and overriding crust. Upon subduction initiation, the maximum depth of slab‐mantle decoupling (MDD) is relatively shallow (∼20 km depth), resulting in mantle flow and CPO development in the wedge corner. As subduction continues, the MDD deepens, the wedge corner cools and stagnates, and the olivine CPO becomes frozen‐in. In the cool wedge corner, antigorite can form if water is available. In non‐deforming mantle, antigorite CPO develops relative to the host olivine CPO through topotactic growth. We calculate splitting parameters of synthetic local S waves based on the model‐predicted A‐ and B‐type olivine CPOs and topotactically grown antigorite CPO that replaces A‐type olivine CPO in the wedge corner. The fast direction is trench‐normal for A‐type olivine and antigorite CPOs and trench‐parallel for B‐type. When the delay times are long enough (>0.1 s), we find them positively correlated with the thickness of the mantle wedge corner. In NE Japan, where the results of detailed analyses on the spatial variation of the SWS parameters are available, such correlation is not observationally reported. However, the addition of an anisotropic overriding crust provides delay times (∼0.1 s) and trench‐normal fast directions that are consistent with the local SWS observations.more » « less
-
This package of codes uses a 3-D velocity flow field to calculate crystal preferred orientation (CPO) using a modified version of D-Rex (Kaminiski et al., 2004), and then calculates local shear wave splitting (SWS) parameters using MSAT (Walker & Wookey, 2012). It includes the codes needed for the plotting D-Rex output (GMT5, Wessel et al., 2013), the scripts and general workflow to process the elastic tensors from D-Rex before using them in the SWS code, and multiple README files containing more details on each code. The mantle wedge flow from a 45 degree obliquity subduction zone is provided as an example.more » « less
-
Abstract Shear wave splitting (SWS) patterns at subduction zones are often interpreted by complex mantle flow above or below the slab. However, our recent previous work shows dipping anisotropic slabs can explain observed patterns in Japan. Here, we extend this analysis to the Alaska subduction zone, using 2,567 high‐quality teleseismic SWS measurements from 195 broadband stations. As was found in Japan, the observed SWS patterns in Alaska depend on earthquake backazimuth. The fast‐S polarization directions are either trench parallel or perpendicular in southeastern Alaska and form a prominent circular pattern in central Alaska. We found that a dipping anisotropic slab following the Slab 2.0 geometry, with 30% shear anisotropy, and exhibiting tilted transverse isotropy with a symmetry axis normal to the slab interface, predicts both the fast‐S polarizations and delay times (δt = 1.0–1.5 s). This suggests that intra‐slab anisotropy can be the primary control on SWS, without requiring complex mantle flow.more » « less
-
Abstract Complex shear wave splitting (SWS) patterns in subduction zones are often interpreted geodynamically as resulting from complex mantle flow; however, this may not always be necessary. We analyzed 7,093 high‐quality SWS measurements from teleseismic S waves recorded by Hi‐net stations across the Ryukyu arc in Japan. Our findings show a systematic rotation of the fast S polarization from trench‐parallel to trench‐perpendicular depending on the earthquake backazimuth. For the same earthquake, the measured splitting patterns also vary spatially across the southwest Japan. Using full‐wave seismic modeling, we showed that a dipping slab with ∼30% shear anisotropy of the tilted transverse isotropy (TTI) type, with a symmetry axis perpendicular to the slab interface, can predict the observed delay times and polarization rotation. Our results highlight the importance of considering dipping anisotropic slabs in interpreting SWS at subduction zones.more » « less
An official website of the United States government

