skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Green/WeakCoupling: Implementation of fully self-consistent finite-temperature many-body perturbation theory for molecules and solids
The accurate ab-initio simulation of molecules and periodic solids with diagrammatic perturbation theory is an important task in quantum chemistry, condensed matter physics, and materials science. In this article, we present the WeakCoupling module of the open-source software package Green, which implements fully self-consistent diagrammatic weak coupling simulations, capable of dealing with real materials in the finite-temperature formalism. The code is licensed under the permissive MIT license. We provide self-consistent GW (scGW) and self-consistent second-order Green's function perturbation theory (GF2) solvers, analysis tools, and post-processing methods. This paper summarizes the theoretical methods implemented and provides background, tutorials and practical instructions for running simulations.  more » « less
Award ID(s):
2310582
PAR ID:
10616730
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computer Physics Communications
Volume:
306
Issue:
C
ISSN:
0010-4655
Page Range / eLocation ID:
109380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of experimental techniques at the nanoscale has enabled the performance of spectroscopic measurements on single-molecule current-carrying junctions. These experiments serve as a natural intersection for the research fields of optical spectroscopy and molecular electronics. We present a pedagogical comparison between the perturbation theory expansion of standard nonlinear optical spectroscopy and the (non-self-consistent) perturbative diagrammatic formulation of the nonequilibrium Green’s functions method (which is widely used in molecular electronics), highlighting their similarities and differences. By comparing the two approaches, we argue that the optical spectroscopy of open quantum systems must be analyzed within the more general Green’s function framework. 
    more » « less
  2. Algebraic diagrammatic construction (ADC) theory is a computationally efficient and accurate approach for simulating electronic excitations in chemical systems. However, for the simulations of excited states in molecules with unpaired electrons, the performance of ADC methods can be affected by the spin contamination in unrestricted Hartree–Fock (UHF) reference wavefunctions. In this work, we benchmark the accuracy of ADC methods for electron attachment and ionization of open-shell molecules with the UHF reference orbitals (EA/IP-ADC/UHF) and develop an approach to quantify the spin contamination in charged excited states. Following this assessment, we demonstrate that the spin contamination can be reduced by combining EA/IP-ADC with the reference orbitals from restricted open-shell Hartree–Fock (ROHF) or orbital-optimized Møller–Plesset perturbation (OMP) theories. Our numerical results demonstrate that for open-shell systems with strong spin contamination in the UHF reference, the third-order EA/IP-ADC methods with the ROHF or OMP reference orbitals are similar in accuracy to equation-of-motion coupled cluster theory with single and double excitations. 
    more » « less
  3. A<sc>bstract</sc> We develop a general expression for weighted cross sections in leptonic annihilation to hadrons based on time-ordered perturbation theory (TOPT). The analytic behavior of the resulting integrals over spatial momenta can be analyzed in the language of Landau equations and infrared (IR) power counting. For any infrared-safe weight, the cancellation of infrared divergences is implemented locally at the integrand level, and in principle can be evaluated numerically in four dimensions. We go on to show that it is possible to eliminate unphysical singularities that appear in time-ordered perturbation theory for arbitrary amplitudes. This is done by reorganizing TOPT into an equivalent form that combines classes of time orderings into a “partially time-ordered perturbation theory”. Applying the formalism to leptonic annihilation, we show how to derive diagrammatic expressions with only physical unitarity cuts. 
    more » « less
  4. GW approximation is one of the most popular parameter-free many-body methods that go beyond the limitations of the standard density functional theory (DFT) to determine the excitation spectra for moderately correlated materials and in particular the semiconductors. It is also the first step in developing the diagrammatic Monte Carlo method into an electronic structure tool, which would offer a numerically exact solution to the solid-state problem. While most electronic structure packages offer support for GW calculations for band-insulating materials, the level of support for metallic systems is somewhat limited. This limitation can be partly attributed to the relatively minor differences often observed between GW and DFT results in treating metallic systems, which is not expected to persist to higher orders in perturbation theory. Describing metals within the GW framework presents a challenge, as it requires accurate resolution of Fermi surface singularities, which, in turn, calls for a dense momentum mesh. Here we implement the GW algorithm within the all-electron Linear Augmented Plane Wave framework, where we pay special attention to the metallic systems, the convergence with respect to momentum mesh, and proper treatment of the deep laying core states, as needed for the future variational diagrammatic Monte Carlo implementation. Our improved algorithm for resolving Fermi surface singularities allows us a stable and accurate analytic continuation of imaginary axis data, which is carried out for GW excitation spectra throughout the Brillouin zone in both the metallic and insulating materials and is compared to numerically more stable contour deformation integration technique. We compute band structures for elemental metallic systems Li, Na, and Mg as well as for various narrow and wide bandgap insulators such as Si, BN, SiC, MgO, LiF, ZnS, and CdS and compare our results with previous GW calculations and available experiments data. Our results are in good agreement with the available literature. Thus our software allows users to compute full bandstructures for metals and insulators using all-electron potential without downfolding to Wannier orbital basis. 
    more » « less
  5. de Vries, E.; Ahn, J.; Hod, Y. (Ed.)
    Prior research shows that self-explanation promotes understanding by helping learners connect new knowledge with prior knowledge. However, despite ample evidence supporting the effectiveness of self-explanation, an instructional design challenge emerges in how best to scaffold self-explanation. In particular, it is an open challenge to design self-explanation support that simultaneously facilitates performance and learning outcomes. Towards this goal, we designed anticipatory diagrammatic self-explanation, a novel form of self-explanation embedded in an Intelligent Tutoring System (ITS). In our ITS, anticipatory diagrammatic self-explanation scaffolds learners by providing visual representations to help learners predict an upcoming strategic step in algebra problem solving. A classroom experiment with 108 middle-school students found that anticipatory diagrammatic self-explanation helped students learn formal algebraic strategies and significantly improve their problem-solving performance. This study contributes to understanding of how self-explanation can be scaffolded to support learning and performance. 
    more » « less