Finding an optimal design for a structural system subject to seismic actions to minimize failure probability, repair costs, and injuries to occupants, significantly contributes to the resilience of buildings in earthquake regions. This research presents a comprehensive framework for the performance-based design optimization of steel structures, incorporating the Performance-Based Earthquake Engineering (PBEE) methodology delineated in FEMA P-58 [1]. A selected set of ground motions, consistent with the seismic hazard intensity of interest, and a nonlinear finite element model, established using OpenSees, enable the assessment of the system's dynamic response. To address the computational complexity related to evaluating the probability of failure of the system during an optimization iteration when using the PBEE methodology for assessing performance, this study introduces metamodeling techniques as a substitute for the original high-fidelity nonlinear finite element model. In particular, Kriging is employed to approximate both the median and standard deviation of the Engineering Demand Parameters (EDPs) in the design domain. The parameters of the Kriging metamodels are derived from nonlinear dynamic analyses performed using the original high-fidelity model and an optimal sampling plan obtained through Latin Hypercube sampling. Under the assumption of a lognormal distribution, the metamodel is then used to generate a large number of simulated demand sets necessary for the Monte Carlo procedure adopted by FEMA P-58 to calculate the distribution of probable losses for any given value of the design variable vector. Additionally, the median and standard deviation of the fragility function modeling collapse are also approximated by a Kriging metamodel, in which the parameters are derived from an Incremental Dynamic Analysis (IDA) for any given value of the design variable vector. The scheme is illustrated in a full-scale case study consisting of the performance-based optimization of the buckling-restrained braces of a steel seismic force-resisting system in terms of expected losses and construction costs. The study demonstrates that the proposed risk-based optimization scheme effectively balances construction costs with expected financial losses from earthquakes, thus enhancing the seismic performance of the system.[1] Applied Technology Council, & National Earthquake Hazards Reduction Program (US). (2012). Seismic performance assessment of buildings. Federal Emergency Management Agency.
more »
« less
Design Optimization to Minimize Material Usage in Steel Buildings Subjected to Lateral Loads
Abstract This chapter presents a comprehensive approach to optimizing steel usage for reducing the environmental impact of building structures, aligned with sustainable development goals. The study focuses on developing the structural design of members with optimization methods to reduce steel usage, leading to lightweight structural systems while minimizing carbon footprints in the built environment. This study identifies optimum cross-sectional dimensions of structural sections to withstand lateral wind loads. For that purpose, a nonlinear programming solver is used. This solver is robust in finding the minimum of a constrained nonlinear multivariate function. The volume of the structural steel is taken as the objective function to ensure sustainability, while two constraints of demand to capacity indices of structural members as a strength condition and inter-story drift ratio as a serviceability constraint are taken to meet performance criteria, such as safety and cost-effectiveness designing process. The results show that this optimized design tool can effectively reduce the weight of structural steel usage, paving the way to achieve both sustainable and resilient buildings.
more »
« less
- Award ID(s):
- 2214039
- PAR ID:
- 10616784
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- Page Range / eLocation ID:
- 1529 to 1538
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
attributed to loss of load carrying capacity of the individual members. Dominant failure modes in structural steel members include interactions between inelastic lateral torsional buckling, global buckling, and local buckling (referred to as Interactive Buckling). Accurate performance assessment of steel moment frames highly relies on the accuracy of the model-based simulations of such limit states. Commonly used concentrated hinge and fiber-based models fail to address the physics of this response leading to inaccurate performance assessment of structures. A nonlinear displacement-based fiber element [named Torsional Fiber Element (TFE)] to simulate monotonic and cyclic interactive buckling in steel members is proposed and implemented on OpenSees (an open-source finite element software). The element includes St. Venant as well as warping torsion response that are essential for lateral torsional buckling response in a wide-flange I-section, through enriched displacement fields and strain interpolation. Response of local buckling is represented in a quantitative manner using a novel multi-axial constitutive relationship with calibration of an effective softening behavior in the post-buckling response. Mesh dependency issue related to the softening material model is also discussed and addressed through a proposed non-local strain measure. The efficacy of the model is assessed through several continuum finite element simulations and experimental data.more » « less
-
The resistance of thin-walled steel beams in fire is governed by a complex interaction between the buckling of the plates and the lateral-torsional buckling (LTB) of the member, combined with the temperature-induced reduction of steel properties. Besides, in many applications, steel beams are subjected to non-uniform thermal exposure which creates temperature gradients in the section. There is a lack of analytical design methods to capture the effects of temperature gradients on the structural response, which leads to overly conservative assumptions thwarting optimization efforts. This paper describes a study on the strength of thin-walled steel beams subjected to constant bending moment in the major-axis and thermal gradients through analytical and Machine Learning (ML) methods. A parametric heat transfer analysis is conducted to characterize the thermal gradients that develop under three-sided fire exposure. Nonlinear finite element simulations with shells are then used to generate the resistance dataset. Results show that the use of the Eurocode model with a uniform temperature taken as the hot flange temperature severely underestimate the moment strength with an R^2 of 0.61. The ML models, trained using physically defined features, are far superior to the Eurocode methods in predictive capacity. The ML-based models can be used to improve existing design methods for non-uniform temperature distributions.more » « less
-
The Advanced Robotics and Automation (ARA) Lab has engineered its next-generation robot for steel bridge inspection. This particular design is specialized for its particularly high strength adhesion force and high maneuverability. The robot can utilize various steering configurations such as Ackermann, synchronous and static point steering while navigating steel structures and adhering to cylindrical members. The adhesion system creates a comprehensive platform for adding extra sensing equipment by the user and will serve as a basis for future works. This paper will discuss in detail the design work done to ensure that the proposed robot would function as intended before we made it and show how the capabilities we engineered the proposed robot have made it a step forward for the steel inspection industry.more » « less
-
Abstract The current code provisions in ACI 440.11 are based on the flexural theory that applies to slender members and may not represent the actual structural behavior when the shear span-to-reinforcement depth ratio is less than 2.5 (i.e., deep members). The Strut-and-tie method (STM) can be a better approach to design deep members; however, this chapter is not included in the code. Research has shown that STM models used for steel-reinforced concrete (RC) give satisfactory results when applied to glass fiber-reinforced polymer-reinforced (GFRP)-RC members with a/d less than 2.5. Therefore, this study is carried out to provide insights into the use of STM for GFRP-RC deep members based on the available literature and to highlight the necessity for the inclusion of a new chapter addressing the use of STM in the ACI 440.11 Code. It includes a design example to show the implications of ACI 440.11 code provisions when applied to GFRP-RC deep members (i.e., isolated footings) and compares it when designed as per STM provided in ACI 318-19. It was observed that current code provisions in ACI 440.11 required more concrete thickness (i.e.,h = 1.12 m) leading to implementation challenges. However, the required dimensions decreased (i.e.,h = 0.91 m) when the design was carried out as per STM. Due to the novelty of GFRP reinforcement, current code provisions may limit its extensive use in RC buildings, particularly in footings given the water table issues and excavation costs. Therefore, it is necessary to adopt innovative methods such as STM to design GFRP-RC deep members if allowed by the code.more » « less
An official website of the United States government

